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a b s t r a c t

Taking the aggregator as a unit, battery swapping and charging stations (BSCSs) for electric vehicles
(EVs) can be aggregated and dispatched by grid operators, to realize the demand-side resource
regulation. Considering the characteristics of an aggregator’s multilateral services, in this study, BSCSs
need to ensure the quality of swapping service for EV users and participate in the demand-side
regulation response. Firstly, we analyze the operation mechanism of a BSCS in the aggregation mode
and propose a state transition model for EV batteries. On this basis, the EV demand uncertainty is
incorporated by a distributed robust optimization (DRO) approach for multi-timescale inventories,
and an optimization model to maximize the BSCSs’ income is established, which obtains the optimal
load planning and dispatchable capacity scheduling for a BSCS aggregator. Extensive simulations and
numerical results show that the BSCS aggregator with demand-side regulation capacity can increase
its income by 59.05% and 36.78% on working and non-working days, respectively. Also, the aggregator
does not worsen the original power load while meeting the EV swapping demand and can decrease
the daily load fluctuations by 0.65% and 12.89%, reduce the peak–valley difference by 5.81% and 7.80%,
and increase the load rate by 3.67% and 4.08% in working and non-working day situations through
providing the dynamic dispatchable capacity for the grid.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the popularity of EVs, the number of BSCSs has been
ncreasing gradually, to realize effective EV charging through
wapping batteries (Ding et al., 2022; Sui et al., 2022). In addition
o meeting the EV swapping demand, a BSCS can also be used
s an energy storage resource to make its redundant charging
nd discharging power capacities available for grid regulations.
owever, the power capacity of a single BSCS is relatively small
ompared to a large-scale power grid, and EV charging demand
s stochastic (Zhang et al., 2021). It is not possible for a BSCS to
irectly participate in the operation and dispatch of the power
ystem.
Multiple BSCSs with similar operational characteristics can be

umped together through an aggregator to participate in power
rid regulations (Bruninx et al., 2020). An aggregator integrates
he dispatchable charging and discharging power capacities of
SCSs using an optimization algorithm and reports them to grid

∗ Corresponding author.
E-mail address: sm.muyeen@qu.edu.qa (S.M. Muyeen).
ttps://doi.org/10.1016/j.egyr.2023.07.022
352-4847/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
operators. Then the aggregated BSCSs can participate in grid op-
eration services through bidding and negotiation in the electricity
market. During power system operations, grid operators can issue
power dispatch instructions based on the regulation capacity
BSCS aggregator can provide, and then the aggregator executes
the instructions to support the active power balance of the power
system (Chen et al., 2023; Diaz-Londono et al., 2022).

In the aggregation mode, a BSCS aggregator needs to con-
sider interfacing with EV users to meet their swapping demands
and also the power grid to serve BSCSs’ surplus capacity for
system operations. Thus, this involves the interaction and coordi-
nation of multiple units. To enable BSCSs’ participation in power
grid dispatch, a BSCS aggregator needs to provide two pieces
of information for grid operators in the day-ahead stage: BSCSs’
own load plan and the dispatchable capacity schedule that can
be dispatched by grid operators. BSCSs need to provide battery
swapping services for EVs as their primal task (Tao et al., 2022),
but the practical EV demands in every time step are different and
uncertain. This makes the dispatchable capacity of BSCSs different
in every time step, which is difficult to accurately determine.
This poses great challenges for BSCS aggregators to make optimal
operational decisions.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The essence of BSCSs’ strategy is a reasonable balance be-
ween their charging plan and dispatchable capacity. Regarding
he charging plan of EV batteries (EVBs), most studies propose
he EVBs’ orderly charging strategy through establishing some
athematical models from the perspective of economic indica-

ors (Mahoor et al., 2019; Zhang et al., 2023; Ren et al., 2021) or
ower distribution network operation characteristics (Ding et al.,
022; Tian et al., 2022; Chowdhury et al., 2023). For example,
uthors in Mahoor et al. (2019) built the BSCS optimal dispatch is-
ue considering EV demand uncertainties as a main sub-problem.
hey realized the iteration between the state of batteries and the
inimal operation cost by Benders decomposition technique, to
evelop the BSCS optimal operation strategy. Based on this, the
esearch in Zhang et al. (2023) and Ren et al. (2021) considers
erving the power grid. Researchers in Zhang et al. (2023) pro-
osed a charging cost model considering EVs to absorb surplus
nergy under the vehicle-to-grid mode, optimizing EVs’ orderly
harging and discharging schedule according to their flexibility
equirements. Authors in Ren et al. (2021) further investigated
Vs’ aggregation and established an integer programming model
o maximize the economic benefits of aggregators. This prob-
em is developed under the minimum satisfaction of EV users
nd the minimum load transfer capacity of the power distribu-
ion network, thereby formulating the real-time optimal dispatch
trategy for aggregators. Considering the power grid operation in-
icators, authors in Tian et al. (2022) used Monte-Carlo method to
redict EV charging behavior and proposed an optimal charging
lan for EVs to minimize the total regional load variance. Authors
n Chowdhury et al. (2023) considered the unified configuration
f EV charging stations and distributed generation units in the
istribution network, to minimize the line loss of the grid, and
chieve EV charging state calculation. In Ding et al. (2022), the
conomy and load characteristics indicators are considered in the
ptimization objective, and a multi-objective optimization model
s established to simultaneously maximize the BSCS income and
inimize the root mean square and the peak–valley difference
f the load. Poisson distribution is used to describe the arrival
haracteristics of EVs and formulate the optimal charging strategy
f a BSCS.
To determine the dispatchable capacity of energy storage ag-

regators, current studies mainly focus on the aggregation of
oad-side distributed battery energy storage stations (BESSs) to
espond demand-side incentive mechanism and participate in
egulation services of power systems. For example, authors in
shnoei et al. (2020) used a model predictive control method
o process the power system frequency signals and developed
robust control scheme for distributed BESSs aggregation for

oad frequency regulation. Authors in Zhou et al. (2021) proposed
n optimal operation strategy for BESS clusters in commercial
uildings to minimize the peak demand for regional substations.
esearchers in Wang et al. (2019) focused on the control algo-
ithm of distributed small-scale ESS aggregators and analyzed
he charging state balance mechanism of each ESS serving the
econdary frequency regulation of the power grid. Authors in
hojasteh et al. (2022) aggregated BESSs with wind farms and
roposed the day-ahead and real-time optimal dispatch strategies
or their joint participation in the energy and reserve markets.
uthors in Lu et al. (2020) discussed the business mode and the
mportant role of aggregators in demand response, and Biggins
t al. (2022) explored the potential value of energy storage ag-
regators participating in energy arbitrage and power balance
arkets in power systems. The purpose of building energy stor-
ge aggregators is to participate in grid operation control, so the
ated power capacity of several ESSs managed by the aggregator
an be directly superimposed as the dispatchable capacity. In
ontrast, a BSCS aggregator needs to first ensure the swapping
emands of EV users and then reports its regulation capacity.
 R
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In summary, there are only a few studies on BSCS optimal
peration strategies in the aggregation mode, and research on op-
rational mechanism of a BSCS aggregator is also limited. There is
lack of research on the development of the coordinated scheme
etween the optimal charging strategy and the dynamic dispatch-
ble capacity of BSCSs. This study aims to address the issue that
BSCS aggregator needs to determine the dispatchable capacity
f BSCSs in each time step while meeting the EV stochastic
wapping demands. To do so, we propose a dynamic dispatchable
apacity determination scheme considering EV swapping uncer-
ainties in a BSCS aggregator. The main contribution of this study
s two-fold:

• An operation mechanism of a BSCS and a state transition
mathematical model of EVBs are proposed within a BSCS
in the aggregator mode, to characterize the interaction and
coordination of BSCSs, power grids, and EV users.

• With grid incentives and swapping incomes, an optimal
dispatchable capacity model is established to maximize the
income of an BSCS aggregator, to achieve the optimal load
plan and the dynamic dispatchable capacity for BSCSs.

he rest of the paper is organized as follows. Section 2 describes
he operational characteristics of a BSCS. Section 3 establishes the
ptimization model for determining the dispatchable capacity of
BSCS aggregator. Section 4 presents case studies and numerical
esults. Section 5 concludes this study.

. Operation model of a BSCS

The dispatchable capacity is a BSCS aggregator’s maximum
harging and discharging power that can be dispatched by power
ystem operators to participate in active power operations at
ach time step. The dispatchable capacity after aggregating BSCSs
epends on their operation strategies. In this section, the working
rinciple of a BSCS in the aggregation mode will be presented
ith the characteristics of state transition analyzed. This provides
he foundation for an aggregator to make decisions.

.1. Operation mechanism of a BSCS

A number of M BSCSs are aggregated and managed by an
ggregator. In this paper, the BSCSs are aggregated with the
ame EV swapping demand characteristics. The schematic of the
ystem operation mode is shown in Fig. 1. This paper adopts
he BSCS operation structure proposed in Zhang et al. (2021), a
SCS contains two main parts: the retired battery energy storage
ystem (RBESS) and the EVBs. Both of them can interact with
ower grids. In addition, the RBESS can charge EVBs inside the
SCS through discharging, to form a self-sufficient resource mode.
hen controlling the energy storage system from the perspective
f the dispatch center, the equivalent state-of-charge (SoC) of
he storage system is considered to be regulated. The imbalance
f SoC among the individual components of the energy storage
ystem does not affect the charging and discharging performance
f the system. In this study, the effects of temperature con-
traints and converter limitations on the charging and discharging
erformances of BSCSs are ignored.
The dispatchable charging capacity of a BSCS is the superpo-

ition of the capacity of EVBs in the BSCS that can be charged
nder the grid arrangement and the charging scheduling of the
BESS. The dispatchable discharging capacity is the superposition
f the full-electricity EVBs in a BSCS that can participate in grid
egulations and the discharging scheduling of the RBESS. In the
ggregation mode, the discharging of EVBs and charging of the

BESS are determined by the grid operator. The charging of EVBs
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Fig. 1. Schematic diagram of the system operation mode.

s to meet the swapping demand and the grid dispatch require-
ents, as in (1a), where the charging energy used to meet the
wapping demand can be obtained from grids and the RBESS, as
n (1c). In addition to charging the EVBs, the RBESS can export
lectricity to the power grid under the dispatch arrangement, as
n (1g). Define Pch

EVB,t and Pdis
EVB,t as the charging and discharging

ower of EVBs dispatched by the grid operator at time step t, Pch
R,t

s the charging power of RBESS dispatched by the grid operator at
tep t, Pch

need,t as the charging power of EVBs at step t to meet EV
emands, PG2P,t as the charging power of EVBs from power grids
t step t to meet EV demands, PR2P,t as the discharging power
f RBESS to charge EVBs in a BSCS at step t, and PR2G,t as the
ischarging power of RBESS to feed to the power grid at step t.
quations (1a)–(1g) depict the operation model of a RBESS-BSCS.

CBNCing,t = Pch
need,t + Pch

EVB,t (1a)
ch
need,t = PCBNneed

Cing,t (1b)
ch
need,t = PG2P,t + PR2P,t (1c)
ch
EVB,t = PCBNdac

Cing,t (1d)
dis
EVB,t = PCBNDing,t (1e)

Cing,t + NDing,t ≤ NCB (1f)
dis
R,t = PR2P,t + PR2G,t (1g)

here PCB is the charging and discharging power for a standard
ile in a BSCS. Terms NCing,t and NDing,t represent the numbers of
VBs being charged and discharged in a BSCS at time step t, and
need
Cing,t and Ndac

Cing,t represent the charging numbers of EVBs at step
to meet EV demands and be dispatched by the grid operator.
erm NCB in (1f) is the number of piles in a BSCS.
According to the above analysis, the dispatchable charging and

ischarging capacities Pch,DS
BSCS,t and Pdis,DS

BSCS,t of a BSCS can be written
s
ch,DS
BSCS,t = Pch

EVB,t + Pch
R,t (2a)

dis,DS
BSCS,t = Pdis

EVB,t + PR2G,t (2b)

.2. EVB state transition characteristics

There are four states of EVBs in a BSCS: charging state (i.e., C
tate), discharging state (i.e., D state), waiting state (i.e., W state),
nd fully charged state (i.e., F state). In addition, EVBs that are
bout to be swapped from EVs are in ‘‘need’’ state. The state

ransition diagram of EVBs in the aggregation mode is shown
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Fig. 2. Schematic diagram of the EVBs state-transition. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this paper.).

in Fig. 2, where the solid blue lines represent the transition
controlled by a BSCS itself, and the dotted red lines show the
transition dispatched by grid operators.

Define NC,t , NF,t , ND,t , and NW,t as the numbers of EVBs in
the C, F, D, and W states in a BSCS at step t, respectively. Terms
Nneed

C,t and Ndac
C,t indicate the numbers of EVBs at the charging state

at step t to meet EV demands and are dispatched by the grid
operator. Nb,need

C,t and N f,need
C,t are the numbers of EVBs that begin

and finish charging at step t to meet EV demands, Nb,dac
C,t and

N f,dac
C,t are the numbers of charging EVBs to be dispatched by grid

at step t, and Nb
D,t and N f

D,t are the numbers of EVBs that start
and finish discharging at step t. Term Tful is the time required
for an EVB to complete charging or discharging, and EB is the
rated electricity capacity of an EVB. Define SoCend and SoCini as
the SoC of EVBs in the F and W states. We assume that EVBs
exit operations only after fully charged or discharged. EVBs in
various states are transferred to each other, and their transfer
relationships are described as in (3a)–(3n).

NC,t = Nneed
C,t + Ndac

C,t (3a)

Nneed
C,t+1 = Nneed

C,t + Nb,need
C,t − N f,need

C,t (3b)

Ndac
C,t+1 = Ndac

C,t + Nb,dac
C,t − N f,dac

C,t (3c)

NF,t+1 = NF,t + N f,need
C,t + N f,dac

C,t − Nb
D,t − N rea

need,t (3d)

ND,t+1 = ND,t + Nb
D,t − N f

D,t (3e)

NW,t+1 = NW,t + N rea
need,t + N f

D,t − Nb,need
C,t − Nb,dac

C,t (3f)

Nb,need
C,t = N f,need

C,t+Tful−1 (3g)

Nb,dac
C,t = N f,dac

C,t+Tful−1 (3h)

Nb
D,t = N f

D,t+Tful−1 (3i)

Tful = ⌈EB(SoCend − SoCini)/PCB⌉ (3j)

NCing,t = Nneed
Cing,t + Ndac

Cing,t (3k)

Nneed
Cing,t = Nneed

C,t + Nb,need
C,t (3l)

Ndac
Cing,t = Ndac

C,t + Nb,dac
C,t (3m)

NDing,t = ND,t + Nb
D,t (3n)

Term N rea
need,t is the actual number of EV swapping demands

met by a BSCS in step t, and its value is decided by the number
of EVBs that can provide the swapping service and the number of
EV demands Nneed,t in step t. Its expression is as follows,

N rea
= min

{
N + N f,need

+ N f,dac
− Nb , N

}
(4)
need,t F,t C,t C,t D,t need,t
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. Dispatchable capacity optimization model for a BSCS aggre-
ator

.1. Idea of dispatchable capacity determination

From Fig. 1, a BSCS aggregator aggregates the number of M of
ndividual BSCSs to participate in grid operations, and the inte-
rated dispatchable capacity after aggregation is the sum of the
ispatchable capacity of total BSCSs. The dispatchable capacity
f each BSCS is the remaining capacity of the station under the
ondition that it can meet the EV swapping demands, which
epends on the charging scheduling of EVBs and the swapping
cheduling of full-electricity EVBs in a BSCS to achieve swapping
ervices.
The operation strategies of BSCSs include the charging

cheduling of EVBs to meet EV demands, the charging and dis-
harging EVBs that can be dispatched by grid operators, the
ower scheduling of the RBESS charging for EVBs, and the charg-
ng and discharging abilities of the RBESS that can be dispatched
n each period of daily operation. Therefore, based on the statisti-
al characteristics of EV swapping demands and considering their
ncertainties, through the coordination with EV users and partic-
pating in the grid electricity’s pricing mechanism and incentive
esponse, a BSCS aggregator can formulate optimization operation
trategies and then obtain the optimal dispatchable capacity.
In summary, if the operation strategy of a BSCS aggregator is

ell formulated, there should be sufficient dispatchable capacity,
o that BSCSs have greater capacities to participate in grid oper-
tions to obtain more benefits, and the regulation ability of the
emand-side resources is reinforced, to avoid waste.
The operation states of EVBs within a BSCS are transferred

o each other in each time step, and the SoC of the RBESS has
equential characteristics, which make the operation strategies of
SCSs couple in different periods, instead of being independent of
ach other. In addition, there is a mutual capacity constraint for
atisfying EV charging demands and providing regulation for the
rid. Therefore, it is necessary to uniformly coordinate and bal-
nce various operation strategies and propose optimal sequential
ecisions to achieve global optimization for a BSCS aggregator.

.2. Objective of the proposed model

Define Esw as the swapping income of a BSCS in daily oper-
tions, Egrid as the income from providing dispatchable capacity
y a BSCS, and Eele as the cost of a BSCS to charge the EVBs.
ince the charging behavior is not a part of participating in the
rid regulation, Eele is calculated through the time-of-use price

mechanism. The optimization objective of a BSCS aggregator of
proposing load and dispatchable capacity schedule is to maximize
the income IA of the BSCSs, i.e.,

maximize IA = M
(
Esw + Egrid − Eele

)
(5)

where

Esw =

Γ∑
t=1

eswN rea
need,t (6a)

grid =

Γ∑
t=1

cA,op

(
gtP

ch,DS
BSCS,t + ftP

dis,DS
BSCS,t

)
∆t (6b)

ele =

Γ∑
t=1

eω, tPG2P,t∆t (6c)

here Γ is the total number of operation periods in an operation
ay. Term esw is the income of a BSCS generated by meeting

he EV battery swapping demand, and cA,op is the unit income
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f providing dispatchable capacity for a BSCS aggregator. Terms
t and ft are the binary (i.e., 0 or 1) variables representing the
eak and valley states of grid load. Term gt is set to 0 in the
eak to ensure that a BSCS does not charge during peak hours or
ischarge during valley periods. Similarly, ft is set to 0 in valley-
oad periods. Term ∆t is a unit time step, which is 1 hour. Term
ω, t is the grid electricity price at step t.

.3. Constraints of the proposed optimization model

1) Operation constraints of a RBESS-BSCS: Further to the op-
ration characteristics described in equation set (1), a BSCS must
eet the following constraints:

oS =

Γ∑
t=1

N rea
need,t

/ Γ∑
t=1

Nneed,t ≥ QoSmin (7a){
NCing,t = 0

}
∥ 1

{
NDing,t = 0

}
= 1 (7b)

1
{
Pch
EVB,t = 0

}
∥ 1

{
PR2G,t = 0

}
= 1 (7c)

1
{
Pdis
EVB,t = 0

}
∥ 1

{
Pch
R,t = 0

}
= 1 (7d)

Constraint (7a) is enforced to ensure the quality of service
(QoS) of a BSCS to EV users, where QoSmin is the minimum QoS of
a BSCS needed to satisfy in the daily operation. Constraints (7b)–
(7d) represent mutual exclusion during the BSCS operation. The
three logic relations indicate that the charging and discharging of
EVBs must not happen at a given time step, the charging of EVBs
and discharging of the RBESS are not dispatched by grid operators
at the same time, and the discharging of EVBs and charging of
the RBESS are not arranged simultaneously. 1 {·} is an indicating
function, which value is 1 if the event occurs, and 0 otherwise.

2) Constraints of the RBESS: The operations of the RBESS need
to consider the following constraints. In (8a), PR,t is the power of
the RBESS, and we set the discharging power as positive in this
paper. Term Pdis

R,t represents the discharging power of the RBESS
in a BSCS at step t, and it is used to describe the charging EVBs
and participation in demand-side ancillary services, as in (8b).
Constraints (8c) and (8d) are the charging and discharging power
limitations of the RBESS, where Pmax

R is the rated power of the
RBESS in a BSCS. Term rt is a Binary variable: ‘‘1’’ if RBESS is
discharging in step t, and ‘‘0’’ otherwise. Constraint (8e) is the
relation between power and energy, where ∆ER,t is the energy
consumption of the RBESS in a BSCS at step t, and ηC and ηD are
the charging and discharging efficiency of the RBESS. The energy
time-coupling constraint of the RBESS is enforced in (8f), where
ER,t is the energy of the RBESS in a BSCS at step t. To ensure
safe operations, over-charging and over-discharging of the RBESS
must be prevented (Zhang et al., 2020), and thus SoCmax and
SoCmin in (8g) are introduced to set the maximum and minimum
values of the SoC. Term Erate is the rated capacity of the RBESS
in a BSCS, and SoC ini

R is the initial SoC of the RBESS in a day. The
constraint in a daily operation cycle is expressed as (8h).

PR,t = Pdis
R,t − Pch

R,t (8a)

Pdis
R,t = PR2P,t + PR2G,t (8b)

0 ≤ Pdis
R,t ≤ Pmax

R rt (8c)

0 ≤ Pch
R,t ≤ Pmax

R (1 − rt) (8d)

∆ER,t = Pdis
R,t/ηD∆t − Pch

R,tηC∆t (8e)

ER,t+1 = ER,t − ∆ER,t (8f)

ErateSoCmin ≤ ER,t ≤ ErateSoCmax (8g)

ER,1 = ER,25 = ErateSoC ini
R (8h)



M. Zhang, S.S. Yu, H. Yu et al. Energy Reports 10 (2023) 734–743

(
c

N

w

3

o
t
s
2
l
e

n
d
c
u
d
e

{

N
Z
d

N

c
d
o
i
s
a
c
f
s
a
v
h

P

m
p

i

E

w
(
w

e
c
s
i
h
a

o
f
t
c

i

s

o
i
2

s

s

w
e

p
t

3

F

i
o

4

n
t
a
t
d
a
s
d
r
s

4

c
s
d
d

3) Constraints of EVBs: In addition to the state relationships
as in (3a)–(3n)), the quantity conservation and operation cycle
onstraints are considered during the EVB operations, i.e.,

S = NF,t + NC,t + ND,t + NW,t (9a)
Γ∑
t=1

Pch
EVB,t∆t =

Γ∑
t=1

Pdis
EVB,t∆t (9b)

here NS is the total number of EVBs in a BSCS.

.4. Uncertainty treatment and optimization model transformation

In practice, EV swapping demand at a time step is unknown
r uncertain. Generally, to deal with uncertain factors in op-
imization problems, a few methods can be adopted, such as
tochastic programming (SP) (Lin et al., 2023; Noorollahi et al.,
022), chance constrained programming (Hong et al., 2022; Fal-
ahi et al., 2022), robust optimization (RO) (Lu et al., 2023; Qiu
t al., 2022), deep learning (Wang et al., 2022).
Although the actual operation statistics of uncertainty are

ot fully available, some probability information or approximate
istribution can be obtained. Therefore, the DRO method that
ombines the advantages of RO and SP can be employed to metic-
lously describe various discrete scenarios in the EV swapping
emand space at each time step (Bertsimas and Thiele, 2006; Wei
t al., 2011; Song and Jing, 2023).
Denote the EV swapping demand space in step t as Zt =

N1
need,t , N2

need,t , . . . , NNt
need,t}, wherein the number of scenarios is

t . The amount of actual EV demand in step t satisfies Nnt
need,t ∈

t , where nt ∈ {1, . . . , Nt}. Therefore, Eq. (4) can be further
escribed as,
rea,nt
need,t = min

{
NF,t + N f,need

C,t + N f,dac
C,t − Nb

D,t , Nnt
need,t

}
(10)

The DRO method simultaneously considers the distribution
haracteristic and robustness characteristic of uncertainty. The
istribution characteristic refers to the occurrence probability
f each EV demand scenario, which is considered based on the
nterval value of uncertain parameters. The probability of each
cenario can be described as the sum of its expected probability
nd the probability deviation. We set P t as the column vector
omposed of the occurrence probabilities of scenarios in Zt . De-
ine P̃ t as the column vector of the occurrence probability of each
cenario under the probability distribution to which uncertainties
re most likely to obey. Let Θ t denote the probability deviation
ector, which belongs to the convex set

[
Θ t , Θ t

]
. Therefore, we

ave

t = P̃ t + Θ t (11)

Therefore, the distribution characteristics of uncertainties are
ainly reflected in the deviation between the actual and expected
robabilities of scenarios.
From the above analyses, we can know that the swapping

ncome Esw,t of a BSCS in step t is satisfied as,

sw,t = ET
sw,tP t = ET

sw,t

(̃
P t + Θ t

)
(12)

here Esw,t is a column vector consisting of Nt elements, Esw,t =

E1
sw,t , E

2
sw,t , . . . , E

Nt
sw,t )T, where term Ent

sw,t is the swapping income
hen the EV demand in step t is Nnt

need,t .
The robustness characteristic refers to the ability that the op-

rators obtain the optimal operation strategies under the worst-
ase scenario. This can ensure the robust performance of deci-
ions. In this paper, the worst-case scenario refers to the probabil-
ty deviations of demand scenarios that make a BSCS aggregator
ave the minimum swapping income in a day. The optimal oper-
tion strategy is the aggregator’s decision when the total income
738
f BSCSs is maximized of the aggregator. Therefore, the objective
unction of the DRO model is a double-layer nested problem in
he form of ‘‘max-inf’’, and the inner-layer problem shown in (6a)
an be further described as,

nf Esw =

Γ∑
t=1

ET
sw,t P̃ t + inf

Γ∑
t=1

ET
sw,tΘ t

.t.

⎧⎪⎨⎪⎩
εT
tΘ t = 0

Θ t ∈
[
Θ t , Θ t

]
Θ t ≥ 0, Θ t ≤ 0

(13)

To achieve the optimal solution, the ‘‘inf’’ problem of the sec-
nd term on the right side of (13) can be equivalently transformed
nto a ‘‘sup’’ problem through the duality theory (Bertsekas et al.,
003), and then, we have

up Θ
T
t λ

(2)
t + ΘT

t λ
(3)
t

.t.

{
εtλ

(1)
t + λ

(2)
t + λ

(3)
t = Esw,t

λ
(2)
t ≤ 0, λ

(3)
t ≥ 0

(14)

here term εt represents a column vector of length Nt with all
lements of 1, i.e., εt = (1, 1, . . . , 1)T. Terms λ

(1)
t , λ(2)

t , and λ
(3)
t

are the free variable and variable vectors introduced when solving
the dual problem, respectively.

After the transformation, the objective function of the pro-
posed optimization problem is as follows,

maximize IA = M

(
Egrid − Eele +

(
Γ∑
t=1

(
ET
sw,t P̃ t + Θ

T
t λ

(2)
t + ΘT

t λ
(3)
t

)))
(15)

By solving the above model, the optimal charging and dis-
atchable capacity scheduling after BSCSs aggregation in each
ime step of the daily operation can be obtained.

.5. Solution method of optimization model

The flowchart of the proposed optimization model is shown in
ig. 3.
The model established in this paper belongs to the mixed

nteger linear programming problem, and its solution can be
btained from CPLEX.

. Case studies

A BSCS aggregator needs to make sequential decisions on the
umbers of charging and discharging of EVBs and the opera-
ion power of the RBESS that can be dispatched by grid oper-
tors in each time step, as well as the discharging power of
he RBESS for the self-sufficiency resource in BSCSs. Since EV
emands have different statistical characteristics in working day
nd non-working day typical situations, and the BSCS operation
trategies are different in different situations, which makes the
ispatchable capacity different. In this section, the optimization
esults are analyzed to verify the effectiveness of the proposed
cheme through numerical simulations.

.1. Simulation data

A BSCS aggregator is set to aggregate ten BSCSs, and a BSCS
an provide service for 200 EVs. The EV demand parameters are
hown in Fig. 4 (Zhang et al., 2021). The scenarios of the EV
emand space in each time step are assumed to obey Gaussian
istribution (Said et al., 2017). We set Θ t = −Θ t , and the

maximum probability deviation is ±5%. Time-of-use electricity
prices are shown in Table 1, which are obtained according to
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Fig. 3. Calculation flowchart of the proposed optimization problem.
Table 1
Time-of-use price ($/kWh).

Situations/Periods 1–7 8–11 12–16 17–20 21–24

Working day 0.050 0.113 0.085 0.127 0.085

Non-working day 0.050 0.050 0.050 0.127 0.050

time-of-use electricity price policy in China. Other parameters in
the optimization model are shown in Table 2 (Zhang et al., 2021).
The relative gap tolerance of the CPLEX solver is set at 0.01%. The
simulations in this paper are conducted on the 4-core AMD Ryzen
3 3200G with Radeon Vega Graphics@3.60 GHz processor.
739
Table 2
Relevant parameters in optimization model.

Parameters Values Parameters Values Parameters Values

PCB 0.04 MW NCB 25 NS 60

EB 0.06 MWh SoCend 100% SoCini 33.33%

QoSmin 98% Pmax
R 1 MW ηC , ηD 95%

Erate 4.9 MWh SoCmin 10% cA,op 30 $/MWh

SoCmax 90% SoC ini
R 50% esw $14.16
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Fig. 4. EV swapping demands for a BSCS in working day and non-working day situations.
Fig. 5. Self-sufficient power in a RBESS-BSCS in a working day.

Fig. 6. Power and SoC of RBESS in the BSCS in a working day.

.2. Operation strategies in a working day

The solution time of the proposed case is 17 seconds and
1 seconds for working and non-working days, respectively,
hich can meet the time requirement for a BSCS aggregator to
id for day-ahead regulation planning.
The total income of a BSCS aggregator in a working day is

32.60K. The load scheduling of BSCSs in each period is 0. That
s, EVBs’ charging power used to meet the EV swapping demands
s from the RBESS in BSCSs, which greatly saves the cost. The
ischarging curve of the RBESS to charge EVBs in a BSCS is shown
n Fig. 5, and Fig. 6 depicts the power and SoC of the RBESS of the
SCS. The number of dispatchable EVBs is shown in Fig. 7.
From the above optimization results, we can see that the BSCSs

an be compensated when they are dispatched for charging in
alley-load periods, so RBESSs are charged to participate in the
ncentive mechanism in these periods, and the charged energy
ill be used to provide EVBs that need to meet the EV demands.
hese arrangements can respond to grid operations and improve
he economic benefits of BSCSs. The discharged energy from
BESSs during valley periods is used for self-sufficiency resources
n BSCSs. There are few EVBs dispatched to participate in the
harging response in valley periods, and the charging of EVBs in
hese periods are mainly used to meet EV demands to ensure the
oS of BSCSs.
During the normal-load periods, a large number of idle EVBs in
and F states in BSCSs can be dispatched through the integrator
740
management, and RBESSs also respond to the incentive mecha-
nism through their charging and discharging. While meeting EV
demands, the dispatchable capacities of EVBs are determined by
the number of piles available in each BSCS, and also the number
of EVBs that do not provide swapping services in the waiting EVB
inventory and fully charged EVB inventory. The 17–20 periods are
the peak of load and late-peak of EV demands. RBESSs discharge
to grids and EVBs in these periods, and the SoC of RBESSs drops to
the minimum safety threshold after the peak period. The EVBs in
F state in these periods can also provide grids with dispatchable
discharging capacities under the condition that they can meet the
swapping demands.

The dispatchable capacities provided by a BSCS aggregator to
the grid are shown in Fig. 8. The aggregator can help the power
regulations for the grid with dispatchable charging/discharging
power of no less than 10 MW. It is in line with the provisions in
the ‘‘Operation rules of northeast electric power ancillary service
market’’ (Anon, 2020), i.e., the minimum power capacity of the
energy storage facility that can be directly dispatched by the
provincial power dispatch center is 10 MW. Therefore, with the
proposed optimization model, BSCSs can participate in demand-
side ancillary services as a directly dispatchable unit after their
aggregation, to support grid operations.

4.3. Operation strategies in non-working day situation

The total income of a BSCS aggregator in non-working day is
$20.85K. The load schedule of BSCSs at each time step is 0 in this
situation, and the power and SoC of the RBESS are presented in
Fig. 9.

Different from the working-day situation, most hours of the
non-working day belong to the valley periods, and the main
functions of the RBESS charging in these periods are as follows:
1) It can provide the dispatchable charging capacity. 2) The unit
income of the RBESS participating in the grid response is less
than the electricity price, so the RBESS is charged to save energy
in these periods, to discharge for EVBs with swapping tasks. To
enable the RBESS to feed all discharged energy into power grids in
the peak-load period, the aggregator fully charges the EVBs used
for EV demands before the peak-load period. The self-sufficiency
resource in a BSCS is shown in Fig. 10. 3) Discharging capability
is available during peak-load periods. As can be seen from Fig. 9,
the SoC of a RBESS drops from the maximum to minimum safety
thresholds after the peak period. The idle EVBs in W and F states
that are not used to meet EV swapping demands can be charged
in valley-load periods and be discharged in peak-load periods,
respectively. The number of EVBs that can be dispatched by the
grid operator in each period is shown in Fig. 11.

The dispatchable capacities reported by a BSCS aggregator to
grid operators are shown in Fig. 12. The dispatchable capacity
of BSCSs after aggregation in non-working day situation is less
than that in working day situation, but it can still respond to the
demand-side incentive mechanism and help to grid operations.
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Fig. 7. Dispatchable numbers of EVBs for a BSCS aggregator in working day situation.
Fig. 8. Dispatchable capacity schedule of a BSCS aggregator in working day
situation.

Fig. 9. Charging/discharging power and SoC of the RBESS in a BSCS in
non-working day situation.

Fig. 10. Self-sufficient power in a RBESS-BSCS in non-working day.

.4. Comparison of operation strategies

To further illustrate the superiority of the proposed scheme,
ur strategies are compared with the scheme that a BSCS aggre-
ator does not provide the dispatchable capacity to grids (i.e., the
on-dispatchable mode). BSCSs in the non-dispatchable mode
nly meet EV demands, and do not interact with grids. The RBESS
s charged when the electricity price is low to have the ability to
ischarge to EVBs in peak periods and discharging of a RBESS is
ntirely used for self-sufficiency resources in a BSCS.
For the economy, the benefits of BSCS aggregation in the non-

ispatchable mode are decreased by 37.13% and 26.89% compared
o our proposed scheme on typical working and non-working
ays, respectively. The aggregation of BSCSs can significantly en-
ance their economic benefits by using the dispatchable capacity
ower grid operations.
741
For the power system operation, daily load fluctuations
(i.e., Eq. (16a), where term PD,t is power load in step t, and
PD is the average load value in a whole day), peak–valley load
difference (i.e., Eq. (16b)), and load rate (i.e., the ratio of the
average load to the maximum load in a day, as in (16c)) are
selected as the load characteristic indexes. We can quantitatively
analyze whether a BSCS aggregator can provide dispatchable
capacity for grid operators on working and non-working days. The
original grid loads in working day and non-working days can be
found in Zhang et al. (2021), and the obtained relevant indexes
are shown in Table 3.

Γ∑
t=1

(
PD,t − PD

)2
(16a)

max
{
PD,t

}
− min

{
PD,t

}
(16b)

PD/max
{
PD,t

}
× 100% (16c)

From Table 3, in a working day the load fluctuations and peak–
valley differences can be reduced by the dispatchable BSCSs. This
is due to the significant load variations among peak, normal,
and valley periods in this situation, which can stimulate the
coordinated operation flexibility among BSCSs and multiple units.
The load fluctuation value in our scheme is higher than that in
the non-dispatchable mode, because BSCSs alternately provide
the charging and discharging capacities to increase the dispatch-
able capacity in normal-load periods. However, the peak–valley
difference and load rate performances are optimal in our scheme.
Under the non-dispatchable mode in non-working day situation,
since most hours in this situation are the valley-load periods,
the charging energy of EVBs directly comes from grids, which
increases load demands in the grid. But the load of BSCSs in our
scheme is 0, and the load curve can be smoothed by providing
regulation services, which reduces the load by 12.89% compared
to the original load. The peak and valley loads are not changed
in the non-dispatchable mode, and the load rate enhances due to
the increased average load. The peak–valley load difference can
be reduced, and the load rate is improved significantly with the
proposed method.

5. Conclusions

To achieve the optimal coordination operations among BSCSs,
EV users, and power grids, in this paper, we propose a BSCSs load
scheduling scheme and dispatchable capacity from the perspec-
tive of a BSCS aggregator with the objective of maximizing the
income of BSCSs. Theoretical analyses and numerical results have
led to the following conclusions,

• The proposed operation strategy can be used to arrange the
aggregated BSCSs as demand-side resources and report their
surplus charging and discharging capacities to power grid
operators, on the premise of ensuring the QoS of BSCSs for
EV users. The income of a BSCS aggregator generated from
providing the dispatchable capacity accounts for 29.44% of
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Fig. 11. Dispatchable numbers of EVBs for a BSCS aggregator in non-working day situation.
Table 3
Load characteristic indexes.

Situations/Indexes Daily load fluctuations Peak–valley load differences Load rates

Working day

Original load 770.61 MW2 19.80 MW 73.54%

Non-dispatchable mode 741.41 MW2 18.90 MW 74.11%

Our scheme 765.57 MW2 18.65 MW 76.24%

Non-working day

Original load 550.10 MW2 17.70 MW 73.81%

Non-dispatchable mode 562.87 MW2 17.70 MW 74.13%

Our scheme 479.19 MW2 16.32 MW 76.82%
Fig. 12. Dispatchable capacity schedule of a BSCS aggregator in non-working
ay situation.

its income in typical working day situations and 25.16% for
non-working day situations.

• The proposed strategy eliminates the power drawn from the
grid for the BSCSs in each time step in both working and
non-working day situations. The charging energy of EVBs
used for EV swapping services is entirely from the RBESS
in the BSCS, which fully utilizes advantages of the internal
resources in BSCSs and saves the electricity cost of BSCSs.

• Compared to the non-dispatchable mode, the income of
BSCSs with the proposed method under working and non-
working days has increased by 59.05% and 36.78%, respec-
tively. Moreover, the proposed strategy does not increase
the grid load and further reduces the peak–valley load dif-
ference and enhances the load rate, thus better contributing
to power system operations.

he provision of dynamic dispatchable capacity involved in this
aper does not consider different types of BSCSs participating in
ctive power regulations of grids. The proposed strategy has not
ncorporated the aggregation effect of BSCSs with different spatial
nd temporal distribution characteristics. These factors will be
ur research focus in future work.
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