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ABSTRACT
Android devices are central to our daily lives, which leads to an in-
crease in mobile security threats. Attackers try to exploit vulnerabil-
ities and steal personal information from the installed applications
on these devices. Because of their widespread usage, these devices
are the prime targets of cyber attacks. To get rid of this, Android
malware detection has become increasingly significant. Federated
learning, which is a decentralized machine learning approach, has
been utilized to improve the privacy of sensitive user data. However,
the integration of federated learning also introduces a vulnerability
to model poisoning attacks, where adversaries deliberately bias the
learning process of the model to impair the performance metrics.
This paper presents a comprehensive assessment of the effect of
model poisoning attacks on federated learning systems deployed
for Android malware detection. We also explain an exhaustive fea-
ture selection methodology that employs both static and dynamic
features of Android applications and created a novel dataset. We
focus on incorporating recent malware samples while creating the
dataset to make the model robust and adaptable to new malware.
Furthermore, we quantify the degradation in model accuracy and
reliability following a model poisoning attack scenario through a
series of experiments. Additionally, we explore the defense mech-
anisms to mitigate the model poisoning attacks based on recent
studies.
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1 INTRODUCTION
Android devices have become ubiquitous in our everyday lives
and serve as essential tools for personal and professional com-
munication, entertainment, and daily management. However, this
widespread usage also opens a door for malware attacks. Malware
is designed to perform a range of harmful activities, such as quietly
stealing sensitive personal data, monitoring user actions through
keystroke logging, unauthorized camera access and location track-
ing, displaying intrusive advertisements, and more, for malicious
purposes that are often undetected by the user [14]. Researchers
have developed numerous solutions using machine learning (ML)
and deep learning (DL) to detect and mitigate these malware attacks.
However, attackers also employ dynamic and adaptive strategies
to bypass the conventional detection mechanisms.

The conventional ML approaches use centrally located training
data that create a door for attackers to steal the sensitive informa-
tion of the users. The applications installed on Android devices
can contain sensitive information such as healthcare data, financial
information, personal information, and pictures that people do not
want to share with strangers. The conventional ML solutions do
not provide any shield to this data while training a model for An-
droid malware detection that can cause malware attacks. Federated
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learning (FL) [2] is a privacy-preserving approach that protects
the training data while incorporating with ML techniques. FL is
a distributed ML approach that enables the collaborative training
of a shared model by collecting data from multiple devices while
ensuring data privacy and security. This integration broadens the
scope of data availability for training as it collects data from multi-
ple devices. In the FL system, the model is sent to the local devices,
where the model is trained using the local data, and only updated
parameters, not the data, are sent back to the central model for
aggregation. This approach ensures that sensitive information re-
mains on the device [23]. The overview of an FL framework is
shown in Figure 1. There are three types of FL: horizontal federated
learning (HFL), vertical federated learning (VFL), and federated
transfer learning (FTL). HFL, also known as sample-based FL, is
used when the datasets have the same feature space but the sam-
ples are different. HFL is applicable when data is distributed across
many devices or regions with similar features. VFL or feature-based
FL is suitable when two datasets have the same sample space, but
features are different. This type is useful for collaborations between
different organizations that hold different kinds of data about the
same individuals [13]. FTL allows for the transfer of knowledge
from one domain to another, which enables the model to learn
from one dataset and apply its knowledge to a different but related
dataset. This is applicable in situations where the two datasets have
little overlap in terms of features or samples [19].

However, integrating FL into malware detection systems poses
various security attacks, such as model poisoning attacks, data
poisoning attacks, inference attacks, and sybil attacks, in which ad-
versaries manipulate the learning process by introducing malicious
data to degrade the performance of the model [1].

Figure 1: FL overview [11]

A model poisoning attack [4] represents a significant security
threat wherein malicious participants manipulate the learning pro-
cess by sending harmful updates to the shared model. Unlike tradi-
tional attacks on centralized models, model poisoning in FL utilizes
the distributed nature of the training process and makes detection
and mitigation more challenging. In these attacks, adversaries alter
the local model updates before aggregation to degrade the accuracy
of the global model and to introduce backdoors for specific mali-
cious behaviors without being easily detected. The contributions
of the paper are summarized as follows:

(1) We provide an in-depth analysis of how model poisoning
attacks affect FL systems, demonstrating the vulnerability
of these systems to performance degradation in the context
of Android malware detection.

(2) We introduce a comprehensive feature extraction technique
that incorporates both static and dynamic features of An-
droid applications. This technique not only broadens the
detection capabilities of the system but also ensures the
adaptability to new and evolving malware threats.

(3) We contribute to the dataset creation by incorporating recent
malware samples and enhancing the robustness of the FL
model to current security challenges.

(4) We explore defense mechanisms found in the recent litera-
ture to mitigate the risk of model poisoning attacks in FL.

The remainder of the paper is organized as follows: We discuss
the related work on Android malware detection using FL in Section
2. After that, Section 3 explains the detailed procedure of dataset
creation and the methodology we followed to assess the effect of
model poisoning attacks in FL. Section 4 explains the experimental
setup and implementation of the methodology. Section 5 provides a
detailed analysis of the results. We explore and discuss the defense
mechanisms of model poisoning attacks in FL in Section 6. After
that, we discuss future research directions in Section 7 and finally
conclude the paper in Section 8.

2 RELATEDWORK
In addressing Androidmalware detection, the adoption of FL creates
a significant shift towards enhancing privacy without compromis-
ing efficiency. FL enables the development of ML models across
multiple devices to ensure that the user data does not leave the local
devices. This approach also introduces a set of challenges, such as
the risk of model poisoning attacks, where malicious participants’
goal is to undermine the integrity of the model. Previous research
has extensively explored the contribution of FL in Android mal-
ware detection and explored different feature selection approaches
employed in those works. Despite the advancements, securing FL
frameworks against cyber attacks remains a challenge. This sec-
tion delves into key contributions in detecting Android malware
using FL and outlines the strategies employed and the successes
and shortcomings of their approaches.

Hsu et al. [9] introduced a novel Privacy-Preserving FL frame-
work (PPFL) designed for the detection of Android malware. They
used edge computing to enhance data privacy and model training
efficiency. By conducting static analysis for feature extraction in-
cluding API calls and permissions, and employing Support Vector
Machine (SVM) and Secure Multi-Party Computation (SMPC) tech-
niques, the system performed collaborative model training across
mobile devices without sharing sensitive data. This approach pro-
vides significant privacy benefits that allow the PPFL system to
outperform traditional centralized training methods in accuracy. To
the best of our knowledge, this work is the first to detect Android
malware using FL. The authors used an Android malware dataset
from NICT Japan for the evaluation of their model and achieved
an accuracy of 94.05% using an SVM. However, because of using
edge computing, there is an issue of scalability and computational
demand. While the system relies on edge computing, there are some
challenges with respect to computational resources and scalability.
Additionally, the experiment did not include the dynamic features
that affect the adaptability of the model to the new and evolving
malware.
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D’Angelo et al. [7] proposed a novel FL-based approach to An-
droid malware classification using permission maps and CNN. This
method used static features such as Android permissions and their
severity levels and achieved an average of 3% higher accuracy over
J48 trees and Naive Bayes and 16% higher accuracy over multi-layer
perception (MLP). They utilized the AMD and Drebin datasets for
the evaluation of the proposed solution. By adopting an FL frame-
work, their solution followed distributed data processing across
user devices for model training to overcome privacy concerns and
reduce the computational load on central servers. However, this
strategy is not adaptable to the data heterogeneity issue of FL.
Despite the drawbacks, the proposed method marks a significant
improvement over the previous literature because of evaluating
obfuscation techniques by their model.

Jiang et al. [10] introduced a mechanism for classifying Android
malware called FedHGCDroid, which is a multi-dimensional FL
framework designed for privacy-preserving Android malware clas-
sification. The approach utilizes a combination of convolutional
neural networks (CNNs) and graph neural networks (GNNs) to form
a multi-dimensional classification model, HGCdroid, that extracts
malicious behavior features for malware classification. Addition-
ally, the training method used in their experiment called, FedAdapt,
enhances the adaptability of the framework to the non-IID (non-
Independently and Identically Distributed) distribution of malware
across Android clients. The use of CNNs and GNNs allows for
comprehensive feature extraction that used both statistical and
graphical data to improve classification accuracy. The FedAdapt
mechanism further ensures that the model remains robust and ef-
fective even in the case of varying data distribution which is a
common challenge in FL systems. However, their detection method
is not capable of identifying unknown malware families.

Lee et al. [12] introduced an FL-based Android Malware Detec-
tion using Edge Computing to ensure user privacy. Distributed
model training across multiple devices is performed to avoid cen-
tral data collection and mitigate privacy issues. According to the
FL concept, their approach utilizes local data for model training
and shares only the updated parameters with the central server
for aggregation. Their technique not only preserves privacy but
also allows for the efficient detection of Android malware by using
diverse data sources without direct data sharing. Their solution
achieved a detection accuracy of 91% using CNN while ensuring
user data privacy. However, the approach faces challenges because
of data inconsistencies across devices and the computational burden
on individual devices.

Fang et al. [8] proposed a solution named "FEDriod," which de-
veloped an FL framework designed to enhance Android malware
detection by employing a residual neural network for high accuracy
in detection. This system has the ability to address the dynamic
threats posed by Android malware with variants by utilizing ge-
netic evolution strategies. It involves extracting static features such
as permissions, APIs, Intent, and Hardware and designing a custom
Android malware detection model based on a residual neural net-
work to achieve notable detection performance. Their framework
developed an FL system that allowed multiple detection agencies to
collaboratively develop a comprehensive malware detection model
while preserving data privacy. The genetic evolution strategies they
used are able to detect the existing malware with future variants.

They evaluated the performance using CIC, Drebin and Contagio
datasets. However, the approach only considers the IID data and
excludes the data poisoning scenario while designing their model.

3 METHODOLOGY
This section details the comprehensive methodology employed in
developing the dataset for our research and describes the algorithms
utilized during the implementation phase.

3.1 Dataset Creation
3.1.1 APK selection. In this work, we gathered Android applica-
tions (APKs), both benign and malicious, from the AndroZoo repos-
itory [3]. It is a comprehensive collection known for its vast array
of APK samples. We followed the APKs documentation file named
"Latest.csv" which is available in the AndroZoo website. To ensure
the inclusion of recent malware, we strategically narrowed our
selection criteria to APKs documented with a VirusTotal (VT) scan
date from the years 2022 and 2023. For our dataset, we selected
APKs identified as malicious by at least 5 antivirus programs of
VT and none as benign. The sha256 value, provided for each APK
ensured the integrity and authenticity of our dataset which helped
to maintain a high standard of data quality for our analysis. This
strategy to select APKs facilitated the acquisition of recent malware
samples to ensure that our dataset reflects the current landscape of
Android malware. Out of 13,927 downloaded APKs, there are 6,961
malware and 6,966 benign applications.

3.2 Feature Extraction
We used DroidLysis [6] to extract static features from the down-
loaded APKs. DroidLysis is a static analysis tool designed to inspect
APKs to extract a wide range of static features that are necessary for
understanding the behavior of the applications without executing
them.

Mobile Security Framework (MobSF) [16] is used for analyzing
the dynamic features of APKs. This comprehensive tool facilitates
all-encompassing security assessments for mobile applications.

Figure 2: DroidLysis Report for Malware

3.2.1 Static Analysis. Static analysis involves analyzing the com-
ponents and code of Android APKs without executing them. It
examines the decompiled code, manifest, permissions, and embed-
ded resources to detect patterns and indicators of malware. This
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Algorithm 1 Static Feature Extraction from APK and SQLite Data-
base Creation
1: Objective: To extract relevant features from the DroidLysis

report and create a structured SQLite database for Android
malware detection.

2: Input: DroidLysis Report
3: Output: A populated SQLite database with the static features

of APK.
4:
5: Define Database Schema:
6: Define a structured schema for the SQLite database, including

fields representing APK features such as SHA256 hashes, file
properties, manifest and smali analysis results

7:
8: Initialize Database Connection:
9: Establish a connection to the SQLite database.
10:
11: Data Extraction:
12: Connect to the data source containing raw APK analysis out-

puts.
13: Query the database to retrieve APK analysis results.
14:
15: Data Processing:
16: for each APK analysis result do
17: Parse attributes like the number of classes, directories, file

size.
18: Extract and parse JSON-encoded strings for detailed analy-

sis.
19: Count elements such as activities, libraries, and permis-

sions.
20: Standardize permissions by mapping them to a predefined

list. Each permission is checked against the predefined list, and
unrecognized permissions are noted.

21: end for
22:
23: Populate Database:
24: for each processed APK sample do
25: Create a new record in the database according to the

schema.
26: Populate each record with the extracted feature data.
27: end for
28:
29: Export Processed Data:
30: Write the data to a .CSV file.
31:
32: Finalization:
33: Commit the data to the database and finalize the dataset.

analysis is able to detect the malicious behavior, security vulnera-
bilities, and privacy risks inherent in Android applications before
they are installed or executed on a device [17].

As DroidLysis is a Python script, we used Python for creating a
dataset and further implementation. Necessary dependencies and
libraries are installed that are required by DroidLysis. After that, we
downloaded DroidLysis from the GitHub repository and set it up for
further analysis. Tools such as Androguard or apktool integrated

Figure 3: DroidLysis Report for Benign

with DroidLysis are used to decompile the APK files. Decompiled
source code is examined for identifying suspicious patterns that are
indicators of malware. Permissions are analyzed that are declared
in AndroidManifest.xml to identify excessive or unnecessary per-
missions. Figure 2 and Figure 3 shows the sample DroidLysis report
for a malicious and benign application, respectively. After that, we
followed the Algorithm 1 to create a structured dataset from the
DroidLysis report to further utilize it in detecting an application,
whether it is benign or malicious. At the end of the process, a file
in CSV format is generated containing 498 static features.

3.2.2 Dynamic Analysis. We installed MobSF following the steps
mentioned in their GitHub repository [16]. We executed the APKs
in an emulator and connected with MobSF to observe the real-time
behavior and interactions with the system and network resources.
We used REST API to perform activities such as TLS/SSL security
tests, exported activity tests, runtime dependencies, server location,
URL accessed, emails detected, activity tester, SQLite databases
accessed, and XML file interactions in runtime to detect if there are
any malicious activities. Dynamic analysis captures the behavior
of the application during running, which includes detecting run-
time permissions. It also analyzes network traffic for sensitive data
leakage or communication with suspicious domains and identifies
unexpected behavior that static analysis cannot detect [22].

3.3 Model Poisoning Attacks in FL
In FL, multiple devices train models collaboratively using their local
data in a decentralized manner while maintaining the privacy of
the data. This approach allows for the aggregation of learning from
diverse datasets without the need to share the raw data of the local
devices which addresses privacy and security concerns associated
with traditional centralized ML.

The implementation of model poisoning attacks within an FL
system involves altering the weights of local models trained by
malicious participants before these models are aggregated to update
the global model. The process is started by cloning the global model
for each participant so that all the participants have the same global
model. Malicious participants then train their cloned models on
local data and deliberately manipulate the model weights. They
invert and scale the weights of certain targeted layers to severely
poison the model, and introduce subtle perturbations to other layers
usingGaussian noise to degrade the performance of themodel. Once
training is complete, the weights from all participants, including
those of the poisoned models, are aggregated through averaging
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to update the global model. This cycle of local training, model
poisoning, and weight aggregation exposes the vulnerability of
FL systems to adversarial attacks. We followed Algorithm 2 to
implement model poisoning attacks in FL systems.

Algorithm 2 Federated Learning with Model Poisoning Attacks

1: procedure Load and Prepare Data(𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑝𝑎𝑡ℎ)
2: 𝑑𝑎𝑡𝑎 ← Load dataset from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑝𝑎𝑡ℎ
3: 𝑋,𝑦 ← Preprocess(𝑑𝑎𝑡𝑎) ⊲ Scale features; encode labels
4: 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡 ← Split(𝑋,𝑦) ⊲ Training and test

sets
5: end procedure
6: procedure Create Model
7: 𝑚𝑜𝑑𝑒𝑙 ← DefineModel() ⊲ Define neural network

architecture
8: Compile(𝑚𝑜𝑑𝑒𝑙 ) ⊲ Using optimizer and loss function
9: end procedure
10: procedure Poison Model

Weights(𝑚𝑜𝑑𝑒𝑙, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑎𝑦𝑒𝑟𝑠, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦)
11: for all 𝑙𝑎𝑦𝑒𝑟 ∈𝑚𝑜𝑑𝑒𝑙 do
12: if 𝑙𝑎𝑦𝑒𝑟 .𝑖𝑛𝑑𝑒𝑥 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑎𝑦𝑒𝑟𝑠 then
13: 𝑙𝑎𝑦𝑒𝑟 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑙𝑎𝑦𝑒𝑟 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 × (−𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦) ⊲

Severely poison
14: else
15: 𝑙𝑎𝑦𝑒𝑟 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑙𝑎𝑦𝑒𝑟 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + N(0, 𝐼 ) ⊲ Mildly

poison
16: end if
17: end for
18: end procedure
19: procedure Federated Learning Round with At-

tacks(𝑋_𝑝𝑎𝑟𝑡𝑠,𝑦_𝑝𝑎𝑟𝑡𝑠, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙,𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑖𝑛𝑑𝑖𝑐𝑒𝑠)
20: for 𝑖 ← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋_𝑝𝑎𝑟𝑡𝑠) do
21: 𝑙𝑜𝑐𝑎𝑙_𝑚𝑜𝑑𝑒𝑙 ← Clone(𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙 )
22: Fit(𝑙𝑜𝑐𝑎𝑙_𝑚𝑜𝑑𝑒𝑙, 𝑋_𝑝𝑎𝑟𝑡𝑠 [𝑖], 𝑦_𝑝𝑎𝑟𝑡𝑠 [𝑖])
23: if 𝑖 ∈𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 then
24: PoisonModelWeights(𝑙𝑜𝑐𝑎𝑙_𝑚𝑜𝑑𝑒𝑙, [ ], 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦)
25: end if
26: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 [𝑖] ← 𝑙𝑜𝑐𝑎𝑙_𝑚𝑜𝑑𝑒𝑙 .𝑔𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ()
27: end for
28: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← Aggregate(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) ⊲ Average weights
29: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙 .𝑠𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑔𝑙𝑜𝑏𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
30: end procedure
31: procedure Run Simulation
32: for 𝑟𝑜𝑢𝑛𝑑 ← 1 to 𝑁 do
33: FederatedLearningRoundWithAttacks(. . .)
34: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← Evaluate(𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙, 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 )
35: Print(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
36: end for
37: 𝑟𝑒𝑝𝑜𝑟𝑡 ← ClassificationReport(𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙, 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 )
38: 𝑐𝑜𝑛𝑓 𝑀𝑎𝑡𝑟𝑖𝑥 ←ConfusionMatrix(𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙, 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 )
39: Visualize(𝑐𝑜𝑛𝑓 𝑀𝑎𝑡𝑟𝑖𝑥)
40: end procedure

4 IMPLEMENTATION
4.1 Experimental Setup
We employed the static analysis dataset developed in Section 3.1
for this experiment to analyze the effect of model poisoning attacks
in FL in the context of Android malware detection.

Our experiments were implemented utilizing TensorFlow and
were performed on a MAC laptop with an Apple M2 Max CPU and
32GB RAM.

4.2 Data Preprocessing
In our study, we followed a systematic data preprocessing strategy
to ensure the efficiency of our neural network model designed for
the assessment of the model performance in Android malware de-
tection after model poisoning attacks in FL systems. Initially, to
address the issue of missing values in our dataset, we applied mean
imputation. This technique fills in missing data points with the av-
erage value of the respective feature that maintains the distribution
of data. Subsequently, to normalize the feature space, we utilized
Min-Max scaling. This method re-scaled the features to a fixed
range between 0 and 1 and it enhances the convergence speed of
our model. It prevents any feature from dominating due to its scale.
After that, we employed the Pearson Correlation Coefficient (PCC)
[25] for feature selection to select the most relevant features with a
threshold = 0.2. After applying PCC, the number of features was
reduced from 498 features to 96 features which significantly reduces
the model training time. PCC identifies and retains features that
exhibit a significant linear relationship with the malware detection
outcome. The 20 most relevant features to detect an application,
whether it is benign or malicious, are shown in Figure 4. Finally,
to address the challenge of imbalanced data, we incorporated the
Synthetic Minority Over-sampling Technique (SMOTE) into train-
ing data. This approach artificially generates new instances of the
minority class to balance the dataset and prevent the model’s bias
towards the majority class [5].

Figure 4: Top 20 most relevant static features

4.3 Neural Network Model
The model architecture is constructed using fully connected layers,
where each neuron in a layer is connected to all neurons in the
previous layer. The first layer in the network has 128 neurons
and uses the ReLU activation function. Subsequent layers include
two 64-neuron layers and a 32-neuron layer, each utilizing ReLU
activation for non-linear processing. A 16-neuron layer follows,
again with ReLU activation to further refine the model’s learned
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features. The architecture concludes with a layer consisting of 2
neurons, equal to the number of target classes (malware or benign),
using the softmax activation function. We selected this architecture
so that we can analyze the effect of model poisoning attacks in each
layer of the model separately.

5 RESULT ANALYSIS
This section analyzes the effect of model poisoning attacks in An-
droid malware detection in FL systems. To assess the effect of model
poisoning attacks, we use a range of metrics, including Accuracy,
Precision, Recall, and F1 Score. Definitions for these metrics are
presented in equations (1) through (4) where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁

represent the numbers of true positives, true negatives, false posi-
tives, and false negatives, respectively.

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3)

F1 Score = 2 × Precision × Recall
Precision + Recall (4)

In the FL model with 100 participants, Figure 5 demonstrates
that the system retains a consistently high accuracy level across
all rounds in the absence of an attack. It highlights the robustness
of the learning process among the large number of participants.
However, under a model poisoning attack (assuming the first two
participants are malicious), the accuracy starts lower and shows
an immediate detrimental effect. Despite this, the model shows an
upward trend in accuracy over subsequent rounds that indicates an
adaptive response to the adversarial conditions. Figure 5 shows that
it does not achieve the same high accuracy level as the un-attacked
model. Similarly, Figure 6 shows a minimal loss in the absence of
an attack which signifies stable model performance. Under model
poisoning attack, the model experiences a higher initial loss, and
it gradually decreases. The drop in accuracy means a decline in
the model’s ability to identify malware correctly. This decline in
detection capability poses a significant security risk for Android
applications because it allows harmful applications to go undetected
and compromise user data and device integrity. Therefore, ensuring
the highest level of accuracy is crucial in safeguarding against such
vulnerabilities. Consequently, these analyses underscore the need
for effective defensemechanisms in FL systems tomitigate the effect
of model poisoning attacks and maintain performance stability.

Figure 5: Model Accuracy Figure 6: Model Loss

The robustness of the FL model is evaluated against model poi-
soning attacks with varying proportions of malicious participants.
Table 1 illustrates the degradation in model performance as the
percentage of adversarial participants increases and they target 3rd
layer of the model to attack. With only 5% of participants being
malicious, the model’s accuracy, precision, recall, and F1 score are
marginally impacted and maintain a high score of 0.91 across accu-
racy, precision, recall, and F1 Score. However, as the percentage of
malicious participants rises to 50%, a notable decline is observed,
with the metrics falling to 0.80 in accuracy and F1 score. This trend
indicates a proportional relationship between the number of adver-
sarial contributors and the performance of the model. After that,
Table 2 delves into the model’s performance at different layers when
subjected to model poisoning attacks. The first layer demonstrates
the highest robustness, with all metrics are 0.88. The second layer
is the most impacted, with scores dropping to as low as 0.68 for
the F1 score. Subsequent layers show varied adaptability, with the
third and fourth layers achieving performance metrics up to 0.86.

6 DEFENSE MECHANISMS
Implementing effective defense mechanisms within FL systems
is crucial to prevent cyber threats. As model poisoning attacks
present sophisticated challenges and degrade the performance of
the predictive models, this section delves into the exploration of
various innovative defense strategies.

Shejwalkar et al. [20] presented a novel defense mechanism
against model poisoning attacks in FL systems, called "Divide and
Conquer" (DnC). DnC operates on the fact that a malicious model
update can influence the global model only if it substantially devi-
ates from benign updates. To identify and mitigate such malicious
updates, DnC first computes the principal component, which repre-
sents the direction of maximum variance among the updates. After
that, it calculates the scalar products of the updates with the princi-
pal component, called projections. It removes a constant fraction of
the updates with the largest projections. This approach effectively
isolates and eliminates malicious updates by identifying those that
deviate the most from the benign updates.

Sun et al. [21] introduced a client-based defense mechanism
known as White Blood Cell for FL (FL-WBC), to prevent model
poisoning attacks that have already compromised the global model
in FL systems. FL-WBC works by identifying the parameter space
where the long-lasting effects of attacks reside and then perturbing
this space during local training. This approach not only mitigates
the effects of attacks that have penetrated server-based defenses but
also offers a certified robustness guarantee against such attacks and
ensures the model’s convergence to FedAvg. The defense has been
tested on FashionMNIST and CIFAR10 datasets against state-of-the-
art model poisoning attacks and achieves efficiency in mitigating
the impact of attacks on the global model. Their defense mechanism
takes a few communication rounds without a significant drop in
accuracy under both IID and non-IID data.

Ma et al. [15] developed another defense mechanism, called
ShieldFL, against model poisoning attacks in FL systems to pre-
serve user privacy. ShieldFL utilizes a two-trapdoor homomorphic
encryption scheme to protect against encrypted model poisoning.
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Table 1: Impact of Malicious Participant Proportion on Model Performance Metrics

% of Malicious Participants Accuracy Precision Recall F1 Score

5% 0.91 0.91 0.91 0.91
10% 0.89 0.89 0.89 0.89
20% 0.87 0.87 0.86 0.86
30% 0.82 0.82 0.82 0.82
50% 0.80 0.82 0.81 0.80

Table 2: Model Performance Metrics by Layer with Model Poisoning Attacks

Layer Accuracy Precision Recall F1 Score

First Layer 0.88 0.88 0.88 0.88
Second Layer 0.70 0.79 0.71 0.68
Third Layer 0.86 0.86 0.86 0.85
Fourth Layer 0.86 0.87 0.86 0.86
Fifth Layer 0.84 0.84 0.84 0.84

The core of their defense mechanism includes a secure cosine simi-
larity calculation between encrypted gradients that allows for the
detection and mitigation of suspicious and malicious local gradients
without decrypting them. This approach is designed to be effective
even when data is not identically distributed across users (non-IID
data), which is a common challenge in FL systems. Through exten-
sive evaluations on benchmark datasets like MNIST, KDDCup99,
and Amazon, ShieldFL demonstrates significant improvements in
accuracy over existing defense strategies under both non-IID and
IID data settings.

Zhang et al. [24] introduced an approach named FLDetector to
defend against model poisoning attacks in FL systems by identify-
ing malicious clients. FLDetector follows a strategy to evaluate the
consistency of model updates from each client through multiple
iterations. This is based on the observation that model updates from
malicious clients tend to be inconsistent when compared to those
from benign clients. The server uses historical updates to predict
a client’s model update in each iteration. After that, the server
identifies a client as malicious if the received update significantly
deviates from the predicted one over multiple iterations. FLDetec-
tor utilizes a combination of the Cauchy mean value theorem for
prediction and an L-BFGS algorithm to approximate the integrated
Hessian matrix, which helps to predict the direction and magnitude
of model updates. By analyzing the Euclidean distance between
predicted and actual updates, FLDetector dynamically assigns sus-
picious scores to each client, and these scores are used to classify
clients as either benign or malicious. This detection method allows
FLDetector to isolate and remove the majority of malicious clients
and ensure that Byzantine-robust FL methods can learn accurate
global models with the remaining benign clients.

Panda et al. [18] proposed another defense mechanism called
SparseFed against model poisoning attacks in FL systems. SparseFed
utilizes two main strategies: global top-k update sparsification and
device-level gradient clipping. The defense is based on a theoretical
framework to assess the robustness of FL systems against poisoning
attacks. The core idea of this strategy is to mitigate the influence

of malicious updates by applying the top-k highest magnitude
updates to the global model and clipping gradients at the device
level to restrict the influence of any single device. This approach
significantly reduces the attack surface, ensuring that only the most
significant and benign updates contribute to the model’s learning
process.

7 FUTUREWORK
We will extend our research beyond the current scope to explore
a wider array of attacks targeting FL systems, particularly in the
context of Android malware detection. Recognizing the dynamic
and evolving nature of cyber threats, our primary objective will
be the development of a more robust framework designed to sus-
tain optimal performance levels under adversarial conditions. This
framework will incorporate advanced defensive strategies designed
to counteract not only model poisoning but also other sophisticated
FL attacks. Our further research will also focus on improving the
adaptability of FL systems which enable them to dynamically adjust
to new threats and thereby maintain high accuracy and precision
in malware detection.

8 CONCLUSION
We have analyzed the susceptibility of FL systems to model poison-
ing attacks in the context of Android malware detection. The em-
pirical results from our research emphasize a critical concern. Our
research highlighted that even with a small fraction of malicious
participants, the model’s performance, specifically its accuracy and
precision, significantly drops. This deterioration in performance
directly impacts the system’s ability to detect malware accurately
and poses a substantial risk to the security and privacy of Android
users. We illustrated this vulnerability by analyzing the impact
based on the percentage of malicious participants. It shows that as
the percentage of adversarial participants increases, the model’s
effectiveness in identifying malware correspondingly decreases.
We also explore the existing defense mechanisms to the model poi-
soning attacks based on recent papers. Our work not only gives an
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overview of these vulnerabilities but also serves as an imperative for
the development of advanced defensive strategies. Consequently,
the integration of rigorous security protocols and enhanced ML
models is imperative to strengthen the FL frameworks against so-
phisticated cyber threats.
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