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ABSTRACT

Zubair, Mohammed, Masters: January: 2023, Masters in Computing

Title: Multi-Layer Attack Detection Model for Bluetooth-connected Devices in Smart

Healthcare System.

Supervisor of Thesis: Abdulla Khalid A M Al-Ali, Devrim Unal.

Internet of Things (IoT) is an interconnected network of heterogeneous things through

the Internet. The current and next generation of smart healthcare systems are dependent

on Internet of Medical things (IoMT) devices (e.g, smart wireless medical sensors).

In the current interconnected world, Bluetooth technology plays a vital role in short-

range of communication due to its less resource consumption due to its flexibility

and low resource consumption which suits the IoMT architecture and design. Smart

health system present an ever-expanding attack surface due to the continuous adoption

of a broad variety of Internet of Medical Things (IoMT) devices and applications.

IoMT is a common approach to smart city solutions that deliver long-term benefits to

critical infrastructure such as smart healthcare. As smart healthcare applications rely

on distributed control optimization, artificial intelligence (AI), and in particular, deep

learning (DL), offers an effective approach to mitigate cyber-attacks.

In this thesis we presents a decentralized, predictive DL-based process to au-

tonomously detect and block malicious traffic and provide end-to-end defense against

network attacks in IoMT devices. Furthermore, we provide the BlueTack dataset for

Bluetooth-based attacks against IoMT networks. To the best of our knowledge this is

the first intrusion detection dataset for the Bluetooth Classic and Bluetooth Low En-
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ergy (BLE). Using the BlueTack dataset, we devise a multi-layer intrusion detection

method that uses deep-learning techniques. Then, we propose a decentralized architec-

ture for deploying this IDS on the edge device of a smart-healthcare system that may be

deployed in a smart city. The presented multi-layer intrusion detection models achieve

performance in the range of 97%-99.5% based on the F1 scores.
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CHAPTER 1: INTRODUCTION

Internet of Things (IoT) interconnects and integrate physical objects through internet

in diverse field such as smart healthcare, smart home, industries. The utilization of IoT

devices are expected to reach 75 billion by the end of 2025 [1]. IoT technology is

transforming our cities into smart cities. Smart cities use technologies for sensing,

networking, and computation to enhance the quality of life and well-being of their

inhabitants. Such smart cities also require a new service-centric computing paradigm

for the next generation network (5G, 6G, and beyond) [2].

While there are numerous networking technologies available for long-range com-

munication, the most widely used technology for close proximity communications is

Bluetooth. Bluetooth is well suited to operations on resource-constrained mobile de-

vices due to its low power consumption, low cost, and support for multimedia such as

data and audio streaming. Bluetooth is also widely used in smart healthcare systems to

enable untethered wireless communication between smart healthcare devices. Recently,

Bluetooth was prominent in its adoption for contact-tracing applications in the fight

against the COVID-19 global pandemic [3]. By the year 2030 [4], the number of IoT

devices is expected to surge by 124 billion. Besides, the healthcare economy statistics

predict that the market for IoT devices will grow from 20 billion dollars in 2015 to 70

billion dollars in 2025. It is also reported that 30.3% of the IoT devices in use are in the

health sector Healthcare (2020). The massive usage of IoT devices in heterogeneous

networks provides various services using multiple technologies and protocols (such as

Wi-Fi, Long Term Evolution (LTE), Bluetooth, ZigBee) make the task of securing such

networks very complex. Information Systems Audit and Control Association (ISACA)

research [5] on smart cities identified the security of IoT devices as an important focus
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area as numerous smart city critical infrastructure (CI) concepts (e.g., intelligent trans-

port, healthcare system, and energy distribution) rely on the robustness and security of

smart technologies and IoT devices [6].

As the number of Internet of Medical Things (IoMT) devices increases, the network

becomes congested, which leads to bandwidth and latency bottlenecks [7]. For instance,

an IoMT device sends data to a medical professional for analysis regularly. This trans-

mission of data to the cloud can potentially cause latency and bandwidth congestion in

the communication path, which could endanger the life of the patient. To address this

challenge, the edge cloud concept has emerged for the IoMT paradigm. An edge cloud

improves efficiency and provides more reliability for the smart healthcare system. The

quick response time and reduced energy consumption result in longer battery life for

medical devices and reduce the usage of network bandwidth.

The exponential growth of IoT devices and the massive interconnectivity between

such devices however greatly opens up the potential attack surface for smart health-

care services that may be exploited by malicious actors. IoT devices are vulnerable to

various medium- and high-severity attacks [8]. Various vulnerabilities allow the intrud-

ers to perform a wide range of attacks such as Denial of Service (DoS), Distributed

DoS (DDoS), Man-in-the-Middle (MITM), data leakage, and spoofing. These attacks

result in the unavailability of system resources and can lead to physical harm to the

individuals when the patient is ambulance-bound or hospital-bound. According to a

report of the Global Connected Industries cybersecurity, 82% of healthcare facilities

experience cyberattacks, amongst which 30% target IoT devices [8]. The potential

weakness in the network, IoT device, and protocol allows the attackers to access the

network completely in an unauthorized way (e.g., Mirai attack) [9]. Apart from these
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cyber attacks, insecure operating systems, and application vulnerabilities are some of

the other major threats to the healthcare system. Investigations show that 83% of the

IoT devices run on outdated operating systems, and around 51% of the cyber threats in

the health sector concern imaging devices, which lead to disruption of communication

between patients and medical professionals. Moreover, 98% of the IoT device traffic is

in plain text that can be intercepted by adversaries.

Traditional security mechanisms can not be enforced in the IoT network because the

network protocol stack itself may have numerous vulnerabilities. Zero-day attacks are

very difficult to be detected by traditional security mechanisms due to computational

expenses, which do not go well with the resource-constrained nature of typical IoT

devices [10]. Conventional perimeter security controls only defend against external

attacks, but they fail to detect internal attacks within the network. An intelligent and

faster detection mechanism is required to guarantee the security of the IoT network for

countering the new threats before the network is compromised.

In this Thesis, our focus is on the security of Bluetooth communication in smart

healthcare systems. After reviewing the significant security problems, we focus on the

detection of wireless attacks against IoMT. Wireless attacks are performed when the

data is at rest or in transmission from one device to another device in a wireless medium

over different channels using various protocols namely Bluetooth Low Energy (BLE),

Bluetooth Basic Rate/ Enhanced Data Rate (BR/EDR), Wi-Fi, Long Range (LoRA), etc.

The openness of the wireless network poses threats to the entire network and can end

up in the compromise of the entire system. The attacker may perform various attacks

such as peer-to-peer, denial-of-service, eavesdropping, man-in-the-middle (MITM), and

authentication attacks to take over the IoMT device or complete network.
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Motivation

The security of IoMT objects is distinct from the sensors network and cyber-physcial-

system (CPS). The exponential growth of IoT devices and the massive interconnectivity

between such devices however greatly opens up the potential attack surface for smart

healthcare services that may be exploited by malicious actors. The significant attention

are paid by the security and researcher society all over the world towards intelligent

smart devices. The potential weakness in the network, IoT device, and protocol allows

the attackers to access the network completely in an unauthorized way .Apart from these

cyber attacks, insecure operating systems and application vulnerabilities are some of

the other major threats to the healthcare system. Investigations show that 83% of the

IoT devices run on outdated operating systems, and around 51% of the cyber threats in

the health sector concern imaging devices, which lead to disruption of communication

between patients and medical professionals. Moreover, 98% of the IoT device traffic is

in plain text that can be intercepted by adversaries. Traditional security mechanisms can

not be enforced in the IoT network because the network protocol stack itself may have

numerous vulnerabilities. An intelligent and faster detection mechanism is required

to guarantee the security of the IoT network for countering the new threats before the

network is compromised

Thesis Contributions

The main contributions of this study are as follows:

1. We have curated a novel first-of-its-kind BlueTack dataset for Bluetooth-based

IoT attacks. The BlueTack Dataset consists of popular attacks against Bluetooth

4



BR/EDR protocol namely: Bluesmack, DoS, DDoS, and similar attacks such as

DDoS and MITM attack on the BLE protocol. To the best of our knowledge, this

is the first intrusion detection dataset for the Bluetooth classic protocol and BLE.

2. A secure and scalable framework for the deployment of an Intrusion Detection

System (IDS) on the edge nodes of IoT-based healthcare systems in smart cities.

The framework guarantees quicker identification of malicious activities to ensure

the safety of critically ill patients transported by ambulance.

3. A multi-layer intrusion detection model using Deep Learning (DL) to protect

the edge nodes of the smart healthcare IoMT system. Since IoMT is composed

of several resource-constrained devices, deploying the DL model on the IoMT

device itself for advanced functionality is impractical. Hence, The IDS is divided

into two layers: Layer 1 (where preprocessing is performed on IoMT devices or

the edge node) and Layer 2 (standalone GPU capability device on which the DL

model is deployed). The proposed DL-based IDS achieves 99% accuracy while

being deployed in a real-time scenario.

Thesis Overview

The structure of the rest of the Thesis is as follows: Chapter 2 provides background

and related works, in which we discuss literature of Bluetooth technology, security of

IoMT, Bluetooth protocol and IDS for Bluetooth-enables system. In Chapter 3, describes

about a scalable architecture of smart healthcare system. In chapter 4, we explain our

multi-layer attack detection model using deep learning. At last, the thesis is concluded

with future research direction in chapter 5 respectively.
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CHAPTER 2: BACKGROUND AND RELATED WORK

Bluetooth Technology

Bluetooth technology was invented in 1994 by L.M. Ericsson [11]. Initially this

technology was referred as MCL (Multi-Communicator Links) and was dismissed due

to its lower baud rate of 721 kbps. Later, after further developments it was approved

by IEEE for 802.15.1. in 2002. Progressively, now it holds the market with respect to

its specifications and data transfer data rate that has exceeded upto 20 Mbps. Basically

Bluetooth has 3 different classes for connecting ranges: class 1 connectivity range is 100

meters and permitted power is about 100 mW, Class 2 connectivity range is 10 meters and

permitted power is about 25 mW and Class 3 connectivity range is 1 meter and permitted

power is about 1 mW. The strength of this technology is that it supports both data and

audio (i.e, asynchronous and synchronous links) where Re-transmission of packets can

be done through asynchronous link for error handling. The network is Ad-hoc in nature

and known as piconets, where two or more Bluetooth devices are physically nearest to

communicate on the same channel with same frequency hopping sequence. It operates

on the unlicensed ISM band at 2.4GHz using advance spectrum frequency hopping

technique, the hopping rate is about 1600 hop/sec of full duplex signal. Bluetooth chip

induces a wavelength those are limited to some operating frequencies in a specified

range (short range of communication). However, problems arises if same frequencies

are used by many devices by causing signal interruptions or collisions [12]. In order to

avoid and manage this issue, the signals are expanded over wide range of frequencies.

So far, various protocols have been adopted in the Bluetooth standards (i.e, TCP/IP

stack running over PPP), Bluetooth network encapsulation protocol (BNEP), object
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exchange protocol for exchanges (vCalendar and vCard) with IrDA interfaces. Similar

to the internet protocol stack, Bluetooth also have a list of protocols that promote its

communication. We will provide a brief overview on the Bluetooth protocol stack in

the below subsection.

Bluetooth Protocol Stack

The protocol stack of Bluetooth shown in Figure 1 [13], is classified in to core

specification and profile specification. Core specification, demonstrates the protocols

from physical layer to the data link control with its management functions 9. The profile

specification deals with the different protocol and functions, and it delineates how to

use Bluetooth technology 10.

RFCOMM is a serial port emulator/cable replacement protocol and emulates the

serial interface RS-232 standard. It is placed on the top of the L2CAP. This allows

replacement of serial cable and enables the operation of distinct applications and proto-

cols. The signalling, establishing and controlling of voice calls and data calls between

Bluetooth devices is done by bit oriented protocol TCS-BIN (Telephony control protocol

specification-binary) [14]. The host controllers interface (HCI) links the baseband and

L2CAP, to access the hardware, control the register, render the command interface, and

to link manager and baseband controller [15]. It can be identified as boundary of the

hardware and software.
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Figure 2.1: Protocol Stack of Bluetooth

Now, the protocol stack of Bluetooth is illustrated elaborately for further understand-

ing.

1. Bluetooth Radio Layer: Carrier frequencies and output power are defined in

this layer. For transmission, frequency hopping, time-division duplex scheme and

Gaussian Frequency Shift Keying (GFSK) form modulation is used at the hopping

rate 1600 hops/sec [16]. Each slot is defined as the time difference between two

hops.

2. Baseband layer: This layer defines not only physical links and packet format but

also perform frequency hopping and interference mitigation [17]. Time Division

Duplex (TDD) is used for the transmission directions. Bluetooth packets at

baseband layer consist of following three sections:
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• Access code: The packet partition is used for time synchronization and pi-

conet identification (i.e, channel, devices and inquiry access codes (CAC),

(DAC), (IAC)). Access code constitutes of 4 bit preamble, 64-bit synchro-

nization filed and 4 bit trailer.

• Packet header: It consists of packet type, packet flow control, error con-

trol, address and checksum. For each bit, sequence number (SEQN) and

acknowledge number (ARQN) is used by alternating protocols [18]. Packet

header protection is done by a header checksum with Forward error correc-

tion(FEC). Since, it holds valuable link and survive bit error.

• Payload: The structure of the payload field is depend on the type of link that

is being used and usually, its size is upto 343 bytes.

3. Physical Link: Physical links are of two types of: Synchronous Connection-

oriented Link (SCO) and Asynchronous Connectionless Link(ACL).

(a) Synchronous connection-oriented link (SCO):

In this link master device fixes two consecutive slots at fixed interval of

times. Three SCO links are supported by master device for the same or

different slave device. Two links are supported by a slave from different

masters and three links from the same master device. Voice connection need

symmetrical circuit switched, point-to-point connection. Various Forward

Error Correction (FEC) schemes can be applied for increasing the data

amount depending upon the channel error rate. Re-transmission of voice

over data cannot be done in SCO link, A robust technique, continuous

variable slope delta (CVSD) is applied for voice encoding to ensure the
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security of the data haartsen1998bluetooth.

(b) Asynchronous connectionless link (ACL):In this link, polling scheme is

adopted by the master device and slave devices are addressed in the pri-

ority slots. Only one link is generated between a master and slave. Data

transmission is carried out by various slots packets. Usually, in noisy en-

vironment, packet protection is accomplished by FEC schemes with high

link error rate and overhead too. Hence, Bluetooth proposed a fast re-

peat request (ARQ) scheme for error free and efficient data transmission

haartsen1998bluetooth. Various application requires symmetrical or asym-

metrical, packet switched, point-to- multi point transfer scenarios which are

supported by Bluetooth communication.

4. Link Manager Protocol (LMP): This protocol supervises different features of the

radio connection between a master device and slave device along with their param-

eters specification and setting. It enhances the baseband functionality and covers

Authentication, Encryption and many other functions. During piconet establish-

ment the device begins inquiring by broadcasting an inquiry access code(IAC)

to 32 wake-up carriers. Standby devices sniff the IAC messages periodically on

the wake-up carrier and enter the inquiry mode. Once the device is detected

the master starts to build a connection, from that point the device behaves as a

salve. The device enters page mode, if the inquiry is successful and two different

stages were defined later after this stage. By setting up a piconet, the master is

able to communicate after identifying the device. The special hopping sequence

is calculated by master based on address received by the devices and in return
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synchronizes with the master clock, finally the devices enters the fully-connected

states [19].

The connection states are categorized as Active state and the Low power states.

In the Active state, the slave listens, transmits and receives by participating in the

piconet. ACL and SCO links can be used for this purpose. All devices in the

active state must have a 3-bit active member address (AMA). Bluetooth devices

gets into the low power state for less power or battery consumption. Low power

state is further classified into three, namely: Stiff, Hold and Park states.

• Sniff state: In this the devices are appointed to a limited number of slots for

transmission to its slaves. But, the device retains its Active Member Address

and consumes high power for transmission when compared to Hold and Park

states.

• Hold state: At this state, the device block ACL transmission but does not

release its AMA. Exchanging of SCO packets still goes on, if there is no

activity in one piconet then the slave minimizes the power consumption or

participates in another piconet.

• Park State: The device lowers its duty cycle in this state and least power

is utilized for this process. The device discharges AMA and it receives a

parked member address (PMA).

5. L2CAP: The logical link control and adaption protocol(L2CAP), it provides log-

ical channel between multiple Bluetooth-enabled devices with QoS. In this layer

Connectionless, signalling and Connection-oriented channels are available with

own channel identifier (CID). The dedicated CID values 1,2 are used signalling
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and connectionless channels respectively. The CID value greater than 64 is used

by connection oriented channel for recognizing the connection uniquely. The

protocol Data Units (PDUs) uses the CID values from 3 to 63, that deliver the

operation of segmentation and reassembling.

6. Service Discovery Protocol(SDP): This protocol provides the new services (dis-

covers) in the proximity of the Bluetooth signal range. It facilitates services to the

SDP client by installing the SDP server on the device. The service records are

maintained and identified by 32-bit service that posses unique value and ID.

Security of IoMT

IoMT devices perform diverse tasks in smart healthcare systems such as recording

electrical impulses through Electrocardiogram (ECG) or monitoring blood glucose or

blood pressure. For ambulance-bound patients, IoMT devices monitor the patient’s

activity, save critical information about the patient’s physiological signals, and trigger

alerts to the medical staff inside the ambulance or to a remote monitoring device through

the cloud. As the complete information of the patient flows through the edge node (IoMT

gateway), securing the IoMT attack surface assumes critical importance. An attacker

may target the gateway to modify the patient vital information before sending to the

medical practitioner or by performing denial of service (DoS) attack to disrupt the

communication or service unavailable. These activities leads to risk the patient life.

Rasool et al. [20] have reviewed various security issues of IoMT devices. The authors

describe the vulnerabilities that exist in these devices which can be exploited by attackers

easily. In our article, we are considering internal and external threats that are targeted

against IoMT infrastructure. Since these devices are severely resource-constrained, it
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is easy to render these devices unavailable by draining their battery with devastating

implications. Thus, our focus in this paper is on attacks that may drain the battery of

these devices or which make the device unavailable due to multiple ping requests.

Communication in Smart Healthcare System

The typical architecture of a Smart healthcare system is shown in Fig. 2.2. A typical

smart healthcare system comprises three domains: IoT domain, cloud domain, and user

domain, which serve the role of generating data, storing data, and making diagnoses,

respectively. The IoT domain consists of wireless medical devices, actuators, sensors,

gateways, and other devices. Here, the focus is on acquiring patients’ data from IoMT

devices and transmitting it to the cloud for storage and subsequent access. The cloud

domain is stratified by the edge and core cloud. The edge cloud is placed on the

premises of the medical facility to ensure continuous connectivity and low latency, in

addition to quicker diagnosis of acute cases. Core cloud provides massive storage and

comprehensive analysis of data, and it helps in the diagnosis of current symptoms based

on previous related records. The user domain delivers the processed data from other

domains to the authorized clinical staff. Integration and streaming of vast volumes of

data from different sources are visualized in various forms such as graphics, images,

tabular, and other representations.
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Figure 2.2: The use of Bluetooth and related protocols (BLE: Bluetooth Low Energy;
BR/EDR: Bluetooth Basic Rate/Enhanced Data Rate) in a typical smart healthcare
system for communication between Electronic Patient Care Record Device (EPCRD)
and other entities over the Edge and the Cloud.

Medical devices (such as defibrillators and insulin pumps) that are continuously

linked with the patient for medical treatment are referred to Active Medical Devices (AMD).

On the other hand, medical devices (such as home monitoring devices and medical beds)

whose focus is on periodic monitoring of the patient physical condition and report gener-

ation are called Passive Medical Devices (PMD). Wireless communication technologies

are adopted for communication in IoT devices such as Near Field Communication (NFC),

RFID, Wi-Fi, Bluetooth, LTE, and LoRA. Various IoMT devices use different wireless

technologies. Most of the AMD and PMD utilize Bluetooth Classic, and V4.X and V5.

The Bluetooth technology provides a generic profile for the medical IoT devices to use
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Table 2.1: Technical details of Bluetooth Technology

Features Bluetooth

Classic

Bluetooth

V4.X (BLE)

Bluetooth V5

(BLE)

Medium-access technique (MAC) Frequency

hopping

Frequency

hopping

Frequency

hopping

Multihop solution Yes Yes (Yes)

Network topology Piconet, scat-

ternet

Star-bus mesh Star-bus mesh

Radio frequency 2.4GHz 2.4GHz (2.4GHz)

Nominal data rate (Mb/s) 1-3 1 2

Distance-range (meters) Up to 100 Up to 100 Up to 200

Latency(ms) less than 100 less than 6 less than 3

Nodes/slaves 7 Unlimited Unlimited

Message-Size (bytes) Up to 358 31 255

the 2.4 GHz frequency band, as recommended by the International Telecommunication

Unit (ITU) [21]. Some of the basic differences between BR/EDR and the BLE are

showcased in Table 2.1.

It is noted that Bluetooth-enabled devices have two modes of operation. In the single

mode, a BLE device can not interface with a device that is operating on BR/EDR, and vice

versa. Whereas in dual-mode, both BR/EDR and BLE devices can communicate with

each other. However, the major concern is about security and privacy in all Bluetooth

versions. In this paper, we focus on the detection of attacks against the BR/EDR and

BLE, since the medical sensor and data collection devices in the considered testbed

utilize this version of Bluetooth.

An Electronic Patient Care Record Device (EPCRD) collects health records and

transmits them to the cloud. Edge computing allows and enables the technologies for
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computation at the edge of the healthcare network. It accomplishes the tasks of caching,

processing storage, computation offloading, request distribution, and delivery of the

services from the cloud end to the user end. In our proposed approach, we leverage edge

cloud technology and deploy the IDS on the edge device/nodes of the smart healthcare

system.

Vulnerabilities in the Bluetooth Protocols

The major factor of vulnerability in Bluetooth devices is the version that is being used

for communication. Table [22] in the Appendix describes the vulnerabilities and security

flaws of Bluetooth devices for different versions [23]. Few of the known vulnerabilities

are identified by the researchers, such as MITM, Bluesmack, Battery Drain attacks, and

Backdoor attack [24]. Recently, researchers identified the “SweynTooth” vulnerability

affecting implantable medical devices (e.g., insulin pumps, pacemakers, blood glucose

monitors) and hospital equipment (e.g., patient monitors and ultrasound machines) that

work on BLE [25]. Bluetooth protocol has problems due to the encryption key length

and improper storage of the link keys can be potentially manipulated by the adversary [9].

Intrusion Detection System

Some prior research on Intrusion detection systems (IDS) dedicated to the cyber-

physical system [26] or smart environments using the Wi-Fi protocol against DoS at-

tack [27] has adopted various AI techniques, such as ML and DL. One such approach [28]

framework, a hybrid model that is based on the Principal Component Analysis (PCA)

and Information Gain (IG) incorporating the Support Vector Machine (SVM), Multi-

Layer Perceptron (MLP), and instance-based learning models to identify the intrusions
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in the network. The model is trained and tested using the NSL-KDD, Kyoto 2006+,

and ISCX 2012 dataset, and the optimal features are selected using an ensemble classi-

fier. However, the performance of the model is evaluated with some publicly available

datasets, which are not real-time datasets.

Sawarna et al. [29] have proposed an efficient IDS based on Deep Neural Network

(DNN) using Principle Component Analysis - Grey Wolf Optimization (PCA-GWO), it

eliminates the adversarial activities by providing faster alerts. This research is conducted

to address the problem of data dimensionality for publicly available huge datasets. They

tested the NSL-KDD dataset on various ML and DNN models to detect anomalies,

among which the best accuracy is attained by the DNN. Baburaj et al. [30] have proposed

a cloud based healthcare system using an SVM model to predict the health condition

of a patient. The confidential data is accessed by a legitimate user only. This approach

focused on data mining techniques using ML models, but not to identify the anomalies

in the system.

Likewise, a supervised approach for detecting intrusions in IoT devices in a smart

home is proposed by Eanthi et al. [31]. In this approach, a lightweight standalone

three-layer IDS framework is built using a Decision Tree (DT) classifier with promising

results. Nevertheless, the evaluation of the proposed model is based on a simulation

performed on the open source Weka tool and the effectiveness of the IDS is not tested

against real-time traffic and attacks.

IDS for Bluetooth Enabled Systems

Very few researchers have focused on the security perspective of Bluetooth tech-

nology, especially intrusion detection. Various attacks against Bluetooth devices are
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discussed below to emphasize the need for effective intrusion detection for Bluetooth-

enabled medical IoT devices. Bluetooth technology provides a generic profile for the

IoMT devices and it uses the 2.4 GHz frequency. It is identified as an attractive

protocol for the healthcare system due to its robustness, lesser power consumption,

low cost, suitability for shorter distance communication, and support for data and au-

dio streaming. Moreover, it helps in the IoT domain for machine-to-machine (M2M)

communication [32]. Compromising the IoMT devices could lead to sensitive patient

information being revealed through the interception and decoding of the data and au-

dio/video streaming packets. An IDS detects malicious activities or policy violations

that bypass the security mechanism on a network and is the process of monitoring and

detecting unauthorized events intruding on the network. An intruder is the one who

escalates the privileges of the users to gain access to data or services or to control the

entire network. Bluetooth-enabled systems require a different approach and standard

IDS developed for other protocols are not effective due to the difference in traffic patterns

and the highly constrained nature of Bluetooth devices [33].

Haataja et al. [34] have proposed a Bluetooth intrusion detection and prevention

system based on a set of rules by investigating Bluetooth security to discover malicious

communication on the Bluetooth network. Krzyszto et al. [35] have proposed a detection

system to identify the malicious behavior of Bluetooth traffic in a Bluetooth mesh

network. Multiple watchdog nodes are used for cooperative decisions in different areas

of the mesh network. Malicious activities are detected based on the Received Signal

Strength Indicator (RSSI). However, this model encountered the problem of modeling

transmission range and RSSI parameters with obstacles such as furniture and walls.
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This detection mechanism is not deployed to a variety of attacks and is evaluated in a

simulated environment.

Similarly, Satam et al. [36] built a Bluetooth IDS (BIDS), where normal behavior of

the Bluetooth traffic is defined based on the n-gram approach, and malicious traffic is

classified using traditional ML algorithms. This method attained the highest precision

of about 99.6% and recall of 99.6% against DoS attack. Yet, the effectiveness of the IDS

is not tested against different datasets and other attacks. An anomaly-based intrusion

detection system is proposed by Psatam et al. [37] to detect multiple attacks on the

Bluetooth protocol using ML models by following the zero-trust principle. Nevertheless,

the model is not tested using different attacks and datasets. Newaz et al. [38] have

focused on the detection of the BLE for multiple attacks using ML models to identify

the abnormal behavior of the BLE traffic from the normal traffic pattern. The evaluation

of the model is done on their own real-time traffic for an ideal dataset, but has not been

tested on other datasets.

From the above literature and Table 2.2, it is observed that the existing IDS ap-

proaches that are dedicated to healthcare IoT systems are at the initial stage of develop-

ment. Few of the proposed IDS have validated their models on the data of the network

simulation (dataset) or on a small number of IoT devices but they are not tested on

multiple datasets. Moreover, these proposed IDS models detect malicious activities on

the network by identifying the traffic pattern as normal or abnormal. It is also important

to identify the various types of attacks on the network. In the below subsection, we

describe the healthcare system in use by this paper and Bluetooth technology (BR/EDR

and BLE) deployed.
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2.2. INTRUSION DETECTION SYSTEM 20

Table 2.2: Various BIDS approaches in comparison to our proposed models. Our
Bluetooth intrusion detection covers both Bluetooth classic and Bluetooth low-energy
protocols.

Article DescriptionModel Protocol Data
Avail-
ability

Problem
Address

Deployed

21 DNN
based
IDS
using
(PCA-
GWO)

Deep
neural
net-
work (DNN)

Ethernet /
Wi-Fi

(NSL-
KDD)
-Publicly
available

Data
dimen-
sionality
and
anoma-
lies
detection

No

22 Cloud
based
health-
care
system

Support
vector
machine
(SVM)

- (Vital) -
No

Data min-
ing tech-
niques

No

24 Bluetooth
IDS for
Bluetooth
network

Defined
set of
rules

Bluetooth (BR/EDR)
-No

Malicious
traffic de-
tection

Yes

25 Bluetooth
mesh
IDS-
based on
RSSI

Mesh-
network

Bluetooth (BR/EDR
RSSI
signals)
-No

simulation
and de-
tection of
malicious
patterns

Yes

26 BIDS for
IoT

ML-
models

BR/EDR (BR/EDR)
-No

Malicious
traffic
based on
n-gram

No

27 BIDS for
IoT

ML-
models

BR/EDR (BR/EDR)
-No

Multiple
attack de-
tections
based on
zero-trust

No

29 BLE
IDS for
medical
devices

ML-
Models

BLE (BLE) -
No

Multiple
attack
detec-
tions for
irregular
traffic
flow

Yes

Our ap-
proach

Bluetooth
IDS for
health-
care
system

DL,ML-
models

BR/EDR
and BLE

(BR/EDR,
BLE) -
yes

Multiple
attack de-
tection of
BR/EDR,
BLE
traffic

Yes



CHAPTER 3: SCALABLE ARCHITECTURE

By acknowledging the weakness of the security mechanism, we proposed and de-

signed a scalable architecture to transfer vital information of a patient to the medical

professional efficiently without alteration, tampering the patient data. The objective is

to secure the Bluetooth communication against abnormal activities on the edge device of

the smart healthcare system. The proposed architecture has enforced security policies,

and detection mechanisms at the edge cloud and edge nodes to ensure fast response and

secure emergency services. Edge computing helps to process the data efficiently with

a quicker response time and assists with the deployment of the IDS. Figure 3.1 repre-

sents the proposed architecture of smart healthcare for detecting malicious behaviors

of ambulance-bound, Bluetooth-enabled IoT medical devices in the smart healthcare

system.
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Figure 3.1: Architecture of the proposed security framework. The proposed system
involves Edge cloud for reducing request and response delay. The IDS is multi-level to
suit the resource restrictions of IoMT devices.

As the complete information of the patient flows in and out through the medical

IoT gateway, it allows for a potential attacking surface to compromise the complete

system by (1) targeting the medical IoMT gateway tampering the vital information of

a patient before receives to the medical experts. or by (2) launching DoS/DDoS or

MITM attacks to make the services unavailable or alter the information that leads the

patient life at risk. To detect such abnormal activities while data transferring or data at

rest , we enforce a multi-layer IDS on the edge device of the smart healthcare system.

This IDS comprises two layers, namely, Layer 1 and Layer 2. Layer 1 accumulates
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patient vital information through IoMT-gateway and carry out data preprocess, feature

engineering, selection of features by applying different ML algorithm. Layer 2 will

detect the malicious activities of the Bluetooth traffic on the edge device/node using a

DNN classifier. Next, we describe in detail the features of each layer:

Layer 1

On this layer, the data is collected for preprocessing, featuring engineering and

for feature selection. Data preprocessing helps to provide the privacy of the medical

information from the IoT devices because the information received from IoT devices

is in plain text that can be intercepted by adversaries to perform medium- and high-

severity attacks [39]. Data pre-processing is performed to transform actual data into

data compatible with ML/DL models. For this process, we have used numericalization

(where a string is converted into integer (stoi) then encoded into tokenized sentences

before feeding to any model) and normalization. Data pre-processing helps the model

to be trained and tested quickly. It also increases the accuracy of classification. We

provide a detailed explanation of these stages below.

Eliminating / Dropping features: While capturing the traffic, we eliminated some

information such as source and destination information. This choice is due to two

major issues, firstly, in some scenarios, it is difficult for the sniffer to collect this in-

formation [40], while in other cases the adversary may spoof its address giving wrong

information. In both cases, the classifier attempts to misclassify the traffic by replacing

the missing values with some random numbers, giving higher False positives and True

negatives. Likewise, we have eliminated some other unimportant and irrelevant features.
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Feature selection: In this process, significant features are selected from the dataset by

applying various feature selection techniques [41] [42]. Feature selection increases the

model performance, decreases computational cost, and also increases storage efficiency.

Additionally, using appropriate features reduce the problem of overfitting.

There are various ML approaches for selecting features, such as filter-based meth-

ods, wrapper methods, embedded, and statistical methods. In the univariate selection

technique, a statistical test is applied to each feature to select the features which have a

strong bond with the output variables. We used Chi square (chi-2), in Eqn. 3.1 that gives

the level of independence between the features x t and the label y t, it differentiate the

chi-distribution with degree of freedom as 1.

χ2(xt, yt) =
M.(FZ − PQ)2

(F + P )(F +Q)(P + Z)(Q+ Z)
(3.1)

where F indicates the frequency of the features and their labels in a dataset; P

= frequency of the features emerges without a label; Q = frequency of label emerges

without features; Z = frequency of neither features nor label emerges in the given

dataset; and M = no. of training samples xt = x1, x2, ....xi and prediction sequence yt

= y1, y2, ....yi.

Recursive Feature Elimination (RFE), is an effective method to find an optimal set

of features for both regression and classification tasks. Initially, it creates a model

dependent on all the features and estimates the importance of each feature of a given

dataset. It priorities the features based on the rank order and eliminates those features

that are of least importance based on the evaluation metrics (in our case, we selected

accuracy as a metric to find the optimal features) of the proposed model (DNN), which

is depicted in the Fig. 3.2
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Figure 3.2: Accuracy of the model based on several features. Based on the varying
accuracy of the number of features, we chose 9 features from the dataset to train and
test the model.

We also utilized Logistic Regression (LR) [43] and Random Forest (RF) to determine

which feature is contributing to the [44] output variable. Table 3.1 and 3.2 shows

(”True” value) which indicates that the feature is contributing to the output variable,

based on each univariate selection algorithm. The final score is given based on the

cumulative of the four algorithms used. In the BR/EDR and BLE dataset, they contain

4 and 5 non-numerical values respectively. The non-numerical values are converted to

numeric values before they are fed to the model using one-hot encoders, a process called

numericalization. Finally, we select only the features that are important for identifying

abnormal activities.

Normalization: It is a feature engineering technique used to have the data in one range

for faster processing and classifier accuracy. There are various normalization techniques

available, among which Z-score normalization is highly used due to its simplicity and

performance accuracy [40].
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Table 3.1: Univariate selection score of BR/EDR selected features

Feature Chi-2 RFE LR RF Score

btl2cap.length True True True True 4

HCI events True True True True 4

HCI ACL True True True True 4

Command Complete True True True True 4

Received direction True True True False 3

Sent Direction True True False True 3

Frame.cap len True True True False 3

Disconnect complete True True False True 3

L2CAP True True True False 3

Table 3.2: Univariate selection score of BLE selected features

Feature Chi-2 RFE LR RF Score

btl2cap.length True True True True 4

Time True True True True 4

Protocol True True True True 4

Advertising True True True True 4

btle.AD True True True True 4

PPI.DLT True True True False 3

btatt.OM True True False True 3

btatt.OC True True False True 3



Layer 2

Initially, the medical data from IoT devices is collected and pre-processed on the

first layer, and the collected events from Layer 1 events are sent for detection and

identification to the second layer (the edge node). If any manipulation or deviation in

the Bluetooth traffic is identified, an alert is triggered. On this layer, the events of the

IoT medical device are actively captured and recorded on the events collector and are

placed on the EPCRD device. This traffic is fed in the format of a feature vector which

is represented in Eqn. 3.2

X(t) = (E1, E2, E3, ..., En) (3.2)

This feature vector is fed to Layer 2 to identify the malicious activities on this device

based on the DL technique, which is deployed on the second layer of the edge node.

The reason for placing two layers of intrusion detection is to protect the IoT system

from device-based attacks and also to have full coverage of the IoT healthcare network.

The classifier model gives 99% accuracy which has been placed on the Layer 2. As

the pre-processing and intrusion detection phases are separated on different devices, the

resulting system constitutes a multi-layer IDS. At last, the IDS model triggers an alert

for the administrator to take the required course of action against the intrusion.

Dataset Description

We developed a Bluetooth (BR/EDR and BLE) dataset using realistic traffic gen-

erated using the smart healthcare testbed [45] described above Figure3.1. The dataset

comprises abstract meta-information from the traffic flow of the Bluetooth-enabled med-
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ical IoT network. We have collected 5 GB of BR/EDR and BLE data over about 76 hours

during the normal traffic patterns and also while performing the attacks. Therefore, the

data collected is a combination of benign and malicious traffic. The performed attacks

are DDoS, Bluesmack, MITM, and DoS on the L2CAP (Link Layer Control Adaption

protocol) layer of the Bluetooth protocol stack. The L2CAP protocol is located in the

data link layer of the stack, and it provides connection-less and connection-oriented data

services to the top layer protocols. It allows the upper-level protocols and applications

to send and receive the data frames. After analyzing the captured traffic in the pre-

processing phase, we selected 9 features from each dataset through statistical methods

and correlation analysis as presented in Tables 3.1 and 3.2.

IDS Classifiers

The entire classification process is divided into two main stages, training and testing.

In the training phase, some samples of a dataset are used to train the model. In the

testing phase, new samples are fed to the classifier from the test dataset to evaluate the

performance. To validate the dataset performance, we used existing supervised and

unsupervised ML algorithms in addition to the proposed DL model for training and

testing. The reason for using various ML and the proposed DL models is to benchmark

it and to show that the dataset is free from abnormal results on different classifier models.

Many of the datasets used in the literature are algorithms dependent [46]. Our dataset

produced acceptable accuracy for supervised and unsupervised ML and DL models.

Various experiments with different classifiers helped us to build the most efficient DL

model to identify malicious activities with more than 99% accuracy.
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Classifier using Supervised ML Algorithms

Among the existing supervised ML algorithms, we have selected the most popu-

lar ones, namely: Logistic Regression (LR), Decision Tree (DT), Support Vector Ma-

chine (SVM), and Random Forest (RF). We provide a short description of the algorithms

that we have used in experiments.

Classifier using Unsupervised ML Algorithms

The selected algorithms are Naive Bayes (NB), Isolation Forest (IF), K-Means (KM),

and Local Outlier Factor (LOF). Unsupervised algorithms are trained without using the

labels of the features in the dataset. IoMT devices operate on different protocols,

and due to this complexity, vulnerabilities may emerge. Furthermore, with classical ML

algorithms, many attacks cannot be detected when the attacker does a small manipulation

over time. DL techniques can recognize unknown patterns, outliers, and small changes

from the training model.

Classifier using DNN

We used the Multilayer Perceptron (MLP) model, which is one of the categories of

Feed-Forward Neural Network (FNN), with multiple layers: one input layer, one output

layer, and three hidden layers. Each of these layers consists of a set of neurons. The

process of assembling the hidden layers is known as a DNN as depicted in Figure 3.3.

The DNN-IDS training comprises two phases - forward propagation and backward

propagation. In forward propagation, output values are calculated. Whereas, in the

backward propagation the weights are updated by passing the residual. The training of

the model is implemented using Keras (with Tensorflow backend) and Table 3.3 provides
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Table 3.3: DNN architectural hyper-parameters.

Description Setting

Hidden Layer 3 (50, 25, 25)

Function ReLU

Regularization L2, dropout

Epochs 1000

Loss function Binary crossentropy

Optimizer Adam

Batch Size 42

Dropout rate 0.25

detailed information on the various functions and parameters used. The combination of

all layers is reflected in Figure 3.3. The model’s hidden layers are formulated as in the

MLP. The vector and the biases are represented as bh and by.

f(θ) = L(yt : ŷt) (3.3)

• Hidden layer:

Hl(x) = Hl1(Hl1 − 1(Hl − 2(....(Hl1(x))))) (3.4)

• Training samples:

xt = x1, x2, x3, x4, ..., xi−1, xi (3.5)

• Hidden states:

ht = h1, h2, h3, h4, ..., hi−1, hi (3.6)

• Predictions of sequence:

ŷt = y1, y2, y3, y4, ...yi−1, yi (3.7)
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• Input-hidden weighted matrix:

Wlx.W lh (3.8)

• Output-hidden weighted matrix:

Wly (3.9)

X1 

X2 

X3 

Y^

Softmax layer

W1 

W2 

W3 

W4 

 Hidden layer
Input layer

I:9, O:9

I:9, O:50

I:50, O:25

I:25, O:15

Figure 3.3: DNN architecture for the proposed IDS. It has three hidden layers with
softmax as the output layer.

The objective function of the model, defined as the single pair of the training

example (xt, yt) is:

L is described as the distance calculating the actual yt and ŷt denote the prediction

labels, η denotes the learning rate and k denotes the number of iterations. In DNN,

each hidden layer uses a non-linear activation function to model the gradient error.

Among various activation functions, ReLU gives faster performance and can train the

model with a huge number of hidden layers. For maximizing the efficiency of the
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DNN, we build the model by considering the binary-cross entropy loss function, ReLU

function, and softmax function with non-linear activation to achieve greater accuracy

among the most substantial probability value of each class. In addition, we applied

dropout techniques, to counter the problem of overfitting, by ignoring the randomly

selected neurons. During this process, downstream neurons are ignored in the forward

propagation and updated weights are not applied for the backward pass [47]. The neuron

weights are settled within the network and are tuned for specific features. This effect on

the network will result in less sensitivity to the definite weights of the neurons, which

makes better generalization and is less likely to overfit the training data. In the below

subsections, we show the experiments that we have performed in the selection of IDS

classifiers for the IDS models.
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CHAPTER 4: EXPERIMENTAL RESULTS

To choose the best classifier for Intrusion detection, we have trained and tested the

BR/EDR and BLE Bluetooth datasets with supervised and unsupervised ML algorithms

and DNN. The experimental results and discussion are provided below.

Un-Supervised ML Algorithms

BR/EDR Dataset

The BR/EDR dataset is trained and tested on 4 unsupervised ML algorithms with a

balanced ratio of DOS attack and normal traffic pattern. We trained the 4 algorithms as

binary classifiers to identify the DOS attack and normal traffic. The results achieved are

shown in Table 4.1. Naı̈ve Bayes algorithm recorded the highest accuracy, precision,

F1-Score, and other favorable metrics among all the algorithms. The Precision and recall

scores of Isolation Forest achieved an acceptable level of prediction, while K-means and

LOF achieve more than 55% and 30% of precision and recall, respectively. This suggests

that these two algorithms are not suitable to train the IDS using the created BR/ EDR

dataset. Also, the reason for lower precision and recall of LOF is a direct indication that

the dataset is fully pre-processed. The dataset does not contain a high level of deviations

and we have performed intensive pre-processing on the dataset to make it normalized

and free from outliers (in the Layer 1 of IDS model). Furthermore, the features that

have been selected are highly significant for the output class. The other three metrics

are F1 score, Area-under the ROC Curve (AUC), and Cohen’s Kappa scores. These

metrics provide a homogeneous pattern to the previous three metrics for the Naı̈ve Bayes

classifier.
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Table 4.1: Performance analysis of the BR/EDR IDS using Unsupervised - ML algo-
rithms

Metric Naı̈ve Bayes Isolation for-

est

K-Means LOF

Accuracy (%) 92.4 82.667 78.87 77.67

F1-score (%) 77.15 58.2 59.39 21.9

Recall (%) 63.68 52.34 55.01 38

Precision (%) 97.8 80.9 63.07 30.99

AUC (%) 82 59.38 53.48 51.62

Cohen’s Kappa (%) 72.86 54.34 25.87 15.2

Figure 4.1: Performance of BR/EDR- Unsupervised ML algorithms. This result shows
that the dataset does not show any deviation irrespective of different models (i.e., the
dataset is preprocessed intensively).

34



Table 4.2: Performance analysis of multiclass classification of the BLE IDS using
Unsupervised - ML algorithms. 1=DoS, 2=MITM, 3=Normal

Naı̈ve Bayes (%) Isolation forest (%) K-means (%) LOF

Attacks ↪→ 1 2 3 1 2 3 1 2 3 1 2 3

Accuracy 98.7 78 80.4 79.4 70.7 87.09 80.2 74.2 88.2381 67.4 70.7

F1-score 97.5 67 88 57.5 53.5 70.7 60.2 51.1 75 61.4 21.9 21.9

Recall 96.7 95 99 49.2 43.1 63.3 57 47.7 65.7 68 38 38

Precision 98.2 75 93 76.0970.6 80.9 65 63.0787.2 55.9 30.9 30.9

AUC 97.5 76 80 57.3 55.6 73.9 77.8 72.1 79.4 77.1 52.6 57.6

Cohen’s

Kappa 96 75.3 79.3 53.5 53.9 72.3 57.2 69.0 78.2 75 35.2 15.2

BLE Dataset

Similarly, the BLE dataset is trained and tested on the same unsupervised algorithms,

but we modeled those as multiclass classifiers to identify DoS, MITM, and normal traffic

from the samples. The performance of the classifiers is shown in Figure 4.2. The numeric

scores of each class are visible from Table 4.2. Among the 4 unsupervised algorithms,

Naive Bayes records the highest accuracy scores of 98, 78 and 80 for DoS, MITM, and

Normal traffic identification respectively. Recall, precision, and other metrics fall close

to the accuracy scores for the Naive Bayes classifier. Isolation forest, K-means, and LOF

classifiers show better performance than the BR/EDR dataset with an average accuracy

of 80% for 3 classes.
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Figure 4.2: Performance of BLE- Unsupervised ML algorithms. Multiple attacks are
trained on the same models of BR/EDR, we observe that the models are not biased.)

Supervised ML Algorithms

BR/EDR Dataset

Likewise, the dataset BR/ EDR is modeled as a binary classifier using four supervised

ML algorithms each time, namely LR, DT, SVM, and RF to differentiate DoS attack

and normal traffic. The experimental results depicted in Figure 4.3 and Table 4.3 show

that Accuracy, Precision, and Recall are satisfactory for all classifiers. However, the RF

classifier gives the highest score for all the 3 metrics, followed by DT, SVM, and then

LR. This is clear evidence that the classifier model and dataset are efficient in identifying

malicious traffic of DoS attacks on Bluetooth medical IoT devices.
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Table 4.3: Performance analysis of the BR/EDR IDS using supervised - ML algorithms

LR DT SVM RF

Accuracy (%) 96.8 98.85 97.89 99.15

F1-score (%) 91.7 98.59 97.8 99.6

Recall (%) 88.32 98.5 96.6 98.6

Precision (%) 95.8 99.7 99.1 99

AUC (%) 94 100 98 100

Cohen’s Kappa (%) 89.7 98.56 95.79 99.5

Figure 4.3: Performance of BR/EDR - Supervised ML algorithms. The dataset and
models are efficient in identifying malicious traffic behavior. (Deployed models are SVM
and K-means.)

Figure 4.3 also records the F1-Score, AUC score, and Cohen’s Kappa score, which

substantiates the inference that we deduced from the previous three metrics. Also, we

can conclude that the dataset gives stable results using any of these supervised ML

algorithms, of which RF and DT are the most recommended for general IoT devices and
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other networks. But, in the case of medical IoT devices, we need to choose a lightweight

computationally inexpensive model. Among the tested algorithms, K-means (unsuper-

vised) and SVM (supervised) are lightweight but they are computationally expensive in

terms of training a model that is deployable on medical IoT devices. Nevertheless, the

performance scores fall short for the real-time IDS model, so we investigate the DNN

models using the created datasets.

BLE Dataset

The results of the multi-class model trained using BLE dataset with 4 different

algorithms is shown in Figure 4.4 and Table 4.4. We observe that, unlike LR, the

accuracy scores of the three supervised algorithms, DT, SVM, and RF lie between 95%

and 98%. Though the average performance of the three algorithms, namely, DoS,

MITM, and Normal, is satisfactory, it is difficult to choose the best among these three.

Also, neither one of the single classifiers gives better performances for three classes

identification to suit the real-time IDS performance. LR records less than 50% accuracy

and unstable scores for other metrics. Because of these shortcomings, we investigate

the use of a DNN model for both of the datasets.
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Table 4.4: Performance analysis of multiclass classification of the BLE IDS using
Supervised - ML algorithms. 1=DoS, 2=MITM, 3=Normal

LR (%) DT (%) SVM (%) RF (%)

Attacks ↪→ 1 2 3 1 2 3 1 2 3 1 2 3

Accuracy 48 79 94 96.63 98.5 97.29 97.89 94.39 96.86 97.74 96.5 95.78

F1 score 37 67 92 96.27 99.12 97.8 96.8 95 92 97.27 96.12 95.66

Recall 23 95 98 96.3 98.23 95.6 95.7 84 98 97.3 95.56 93.45

Precision 100 79 95 97.5 98.43 98.1 93.1 89 95 98.5 94.7 96.23

AUC 45 80 98 98 98.65 98 98 93 96 99 97.8 96.88

Cohen’s

Kappa 40 72 95 97 97.4 95.37 95.79 91.43 94.55 98 94 94.25

Figure 4.4: Performance of BLE- Supervised ML algorithms.For real-time detection
and deployment, neither of the single classifiers gives better performance.
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DNN model

Two DNNs are modeled as binary and multi-class classifiers using BR/EDR and

BLE datasets respectively. The training accuracy of the two models lies between 92%

and 95% as depicted in Figure 4.5. The testing accuracies are 98% and above for both

models. From these results, we conclude that the classifier model using DNN is the best

among all the other algorithms we tested. This deduction is bolstered by considering the

Training and Testing Loss scores in Figure 4.6. The training loss of two models starts

at approximately 0.3 and then reaches 0.15 as the learning process goes on. Similarly,

the lowest Test loss recorded is 0.01 which is an indication of a stable DNN model.

Figure 4.5: Training and Testing Accuracy. The proposed IDS DNN model for BR/EDR
and BLE dataset for 1000 epochs attains an accuracy of 98%.

Additionally, to check the uniformity of the dataset, we have tested various ratios of
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abnormal (malicious) and benign traffic patterns. The ratios of benign and abnormal

patterns considered are, 50 − 50, 75 − 25 and 80 − 20. Each time the results that we

achieved are consistent, which suggests that our dataset does not have any bias in the

ratios of the traffic patterns. The accuracy scores of all the tests show that our dataset

achieved less accuracy for unsupervised ML algorithms than for the supervised ML al-

gorithms. From Table 4.5 and Figure 4.7, we deduce that the dataset can be considered a

standard for training IDS models to identify DoS, DDoS, and Bluesmack attacks against

Bluetooth IoMT devices. Moreover, in comparison to other models our proposed model

attain best accuracy which is shown in Table 4.6.

Figure 4.6: Training and Testing Loss - DNN. The recorded test is loss of 0.01 that
indicate DNN is reliable for real-time application,
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Table 4.5: Performance analysis of binary and multi-class classification of the proposed
IDS (BR/EDR and BLE)

BR/EDR BLE-IDS

Binary Binary Multi class

DoS MITM Normal

Accuracy (%) 99.7 94.3 96.86 88.23 96.8

F1-score (%) 99.23 95 92 75 91.7

Recall (%) 98.65 84 98 65.78 88.32

Precision (%) 99.88 89 95 87.23 95.8

AUC (%) 99 93 96 79.43 94

Cohen’s Kappa (%) 99.08 91.43 94.55 78.21 89.7

Figure 4.7: Performance analysis of binary and multiclass of the proposed model for
BR/EDR and BLE respectively.
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Table 4.6: Comparison of our model with existing IDS models

Model Precision(%) Recall(%) F1(%) Accuracy(%)

[38]

(Bluetooth) 98 98 97 98.4

[35]

(Bluetooth) 96.7 88.23 91.8 97

[48]

(Bluetooth) 88.64 88.64 87.5 **

[49]

(NSL-KDD) 95.72 98.65 ** 97.06

[50]

(NSL-KDD) 96 98.7 97.3 **

[51]

(NSL-KDD) ** 98.6 ** 99

Proposed IDS

(BR/EDR) 99.7 99.06 99.38 99.8

Proposed IDS

(BLE) 95 98 95 96.86



CHAPTER 5: CONCLUSIONS AND FUTURE WORK

Bluetooth communication is widely adopted in IoMT devices due to its various

benefits. Nevertheless, because of its simplicity as a personal wireless communication

protocol, Bluetooth lacks the security mechanisms which may result in devastating

outcomes for patients treated using wireless medical devices. As discussed, continuous

monitoring of network activity proves efficient in identifying cyber-attacks in most

scenarios. We apply the same concept to Bluetooth-based medical IoT devices in a smart

healthcare system. In this paper, we have proposed a secure and scalable architecture

and deployed the IDS on the edge nodes of the smart healthcare system. The second

outcome of this research is a standard Bluetooth dataset and a DNN-based classifier for

Bluetooth traffic. To the best of our knowledge, this is the first intrusion detection dataset

for the Bluetooth classic and BLE. From the results, we have seen that the created dataset

can be used to train the IDS model for identifying DoS, DDoS, and Bluesmack attacks

on medical IoT devices operating using Bluetooth technology. We also deduce that the

proposed IDS classifier using DNN gives more than 99% accuracy, precision and recall,

which outperforms the existing models for identifying Bluetooth-based attacks.

In the future, we plan to enhance the following critical areas of the proposed model.

(1) We look forward to enlarging our dataset with more attack types, other than DoS,

DDoS, and MITM. (2) We plan to include the attack data of other protocols such as

WiFi. (3) After which, we aim to improve the intrusion detection classifier to identify

those attacks efficiently on different datasets by applying data fusion or feature fusion

techniques. (4) Furthermore, to develop a mitigation technique for the identified attacks

from our model and also to detect unknown attacks so that the architecture can be

extended to include mitigation mechanisms of the identified attacks.
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