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Abstract We extract the ε-expansion from the recently
obtained seven-loop g-expansion for the renormalization
group functions of the O(N )-symmetric model. The different
series obtained for the critical exponents ν, ω andη have been
resummed using our recently introduced hypergeometric-
Meijer resummation algorithm. In three dimensions, very
precise results have been obtained for all the critical expo-
nents for N = 0, 1, 2, 3 and 4. To shed light on the obvious
improvement of the predictions at this order, we obtained
the divergence of the specific heat critical exponent α for the
XY model. We found the result −0.0123(11) which is com-
patible with the famous experimental result of −0.0127(3)

from the specific heat of zero gravity liquid helium superfluid
transition while the six-loop Borel with conformal mapping
resummation result in literature gives the value −0.007(3).
For the challenging case of resummation of the ε-expansion
series in two dimensions, we showed that our resummation
results reflect a significant improvement to the previous six-
loop resummation predictions.

1 Introduction

Quantum field theory (QFT) offers a successful way to study
critical phenomena in many physical systems [1–11]. It is
universality that is behind the scene where different systems
sharing the same symmetry properties follow the conjecture
that they ought to behave in a similar manner at phase tran-
sition. So it is not strange to have a fluid possessing the same
critical exponents like a magnetic one when both lie in the
same class of universality. The O(N ) vector model from
scalar field theory has an infra red attractive fixed point and
possesses the symmetry that can describe many physical sys-
tems at phase transitions. Near phase transitions, the theory is
totally non-perturbative where in literature there exist many
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computational trends used to study the critical phenomena
within the O(N ) vector model.

For the study of critical phenomena in the O(N ) vec-
tor model, Monte Carlo simulations have been used suc-
cessfully and give precise results for the critical exponents
[12–21]. Besides, bootstrapping the model in three dimen-
sions has been accomplished recently and researchers suc-
ceeded to obtain precise results [22–27]. The nonperturbative
renormalization group has been applied to the same model
and gives accurate results too [28]. Apart from these non-
perturbative methods, the oldest way to tackle the critical phe-
nomena in QFT is resummation techniques applied to resum
the divergent perturbation series associated with renormal-
ization group (RG) functions of that model. However, the
precision of RG results has not been improved since 1998
[29–31] and thus it is in a need to be pushed forward to the
level that makes it able to compete with recent accurate results
from Monte Carlo simulations and bootstrap calculations.

The most traditional resummation algorithm is Borel and
its extensions which have been widely used in literature [3,
4,7–9,29,32,33]. In fact, the recent progress in obtaining
higher orders of the perturbation series stimulates the need for
the application of the resummation techniques to investigate
the theory. Regarding that, the six-loop of the renormalization
group functions has been recently obtained [32] and then the
seventh order has been obtained too [34]. These orders are
representing the renormalization group functions within the
minimal subtraction regularization scheme in D = 4 − ε

dimensions.
The study of critical phenomena by finding an approxi-

mant to the perturbation series follows different routes. For
instance, perturbative calculations at fixed D dimensions
[4,29] are always giving better results specially in three
dimensions. However, while exact results are known in two
dimensions, the resummation of perturbation series did not
give reliable results for some exponents [35,36]. This point
has been studied in Refs. [32,36,37] and it has been argued
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there that the reason behind this is thought to be the non-
analiticity of the β-function at the fixed point. Such problem
can be avoided by resorting to the pseudo-ε expansion (τ -
series) which gives reliable results for both three and two
dimensional cases [38–40]. Similar ideas are followed in the
ε-expansion where ε = 4−D plays the role of the τ parame-
ter in the pseudo-ε expansion. In this technique, perturbation
series though possesses slower convergence [4,32], it might
not suffer from non-analiticity issues too [41]. In view of
the recent seven-loops (g-expansion) calculations [34], one
thus can aim to get improved results from resumming the
corresponding seventh order of ε expansion in three dimen-
sions (ε = 1) as well as get improved predictions for two
dimensions (ε = 2). A note to be mentioned here is that the
most accurate renormalization group prediction for the expo-
nent ν for the XY model [29] (for instant) has a relatively
large uncertainty. This makes it excluded from playing a role
in the current λ-point dispute [30,31]. Accordingly, higher
order predictions from renormalization group is more than
important.

Inspired by the simple hypergeometric algorithm in Ref.
[42], in previous articles [43,44], we introduced and applied
the hypergeometric-Meijer resummation algorithm. What
makes our algorithm preferable is its simplicity and of having
no arbitrary parameters like Borel algorithm and its exten-
sions. Besides, it gives very competitive predictions when
compared to the more sophisticated Borel with conformal
mapping algorithm for instance. The algorithm has been
applied successfully for the six-loop ε-series and for the
seven-loop coupling series in Ref. [43]. For expansions in
4 − ε dimensions, however, it is always believed that the
ε-series has better convergence than the coupling-series [4].
In fact one can speculate about this by considering the large
order behavior for both series. For the coupling series, the
large order behavior includes the term (−gc)n (gc ≡ criti-
cal coupling) while the ε-series has the term (−σε)n with
σ = 3

N+8 . For N = 1 and in three dimensions (for instance),
at the fixed point the g-series behaves as (−0.47947)n

(from seven-loops calculations) while the ε-series behaves
as (−0.33333)n . So it is expected that the resummation of
the ε-series has better convergence.

The recent resummation results of the six-loop ε-series
[32,43] gave accurate predictions for the critical exponents
ν, η and ω for the O(N )-symmetric φ4 theory. However, the
predictions of the relatively small exponents like divergence
of specific heat exponent α are still far away from expected
results. For the XY model for instance, our hypergeometric-
Meijer algorithm gives the result α = −0.00886 [43] (from
six loops) while Borel with conformal mapping result in Ref.
[32] is −0.007(3) and the resummation of seven-loop g-
series in Ref. [43] predicts the value −0.00860. All of these
predictions are all not close enough to the result of the famous
experiment in Ref. [45]. In that reference, the measurement

of the specific heat of liquid helium in zero gravity yields the
result−0.0127(3). Moreover, either the six-loop ε-expansion
or the seven-loop g-expansion are not giving results that over-
lap with Monte Carlo and conformal bootstrap results [31].
Accordingly, resumming the seven-loop ε-series represents
an important point to monitor the improvement of the RG
predictions of the critical exponents. With that in mind, our
aim in this work is to first obtain the ε-series correspond-
ing to the recent seven-loop coupling series for the β,γm2

and γφ renormalization group functions and then apply our
resummation algorithm to the series representing the critical
exponents ν, η and ω for the O(N )-symmetric quantum field
model.

The organization of this paper is as follows. In Sect. 2, a
brief description of the hypergeometric-Meijer resummation
algorithm is introduced. We present in Sect. 3 the extracted
seven-loop ε-expansion of the renormalization group func-
tions. The resummation of the different ε-series representing
the critical exponents ν, η and ω is presented in Sect. 4. In this
section a comparison with predictions from other methods for
N = 0, 1, 2, 3 and 4 is listed in different tables for each N
individually. The study of the challenging two-dimensional
case will follow in Sect. 5. The last section in this paper
(Sect. 6) is dedicated for summary and conclusions.

2 The hypergeometric-Meijer Resummation algorithm

To make the work self consistent, we summarize in this sec-
tion the hypergeometric-Meijer resummation algorithm that
was firstly introduced in Ref. [44] and then applied to the
six-loop (ε-expansion) and seven-loop g-expansion in Ref.
[43]. However, the error analysis of the resummation pro-
cess will be introduced also here. Accordingly, the algorithm
will be presented in two subsections one for the resummation
process and one for error calculations.

2.1 Hypergeometric-Meijer resummation

Our hypergeometric-Meijer resummation is a natural exten-
sion of the simple hypergeometric approximants introduced
by Mera et al. in Ref. [42]. The authors in that reference
suggested the hypergeometric function 2F1(a1, a2; b1;−σ x)
as an approximant for a divergent series with zero radius
of convergence. However, it has been realized by the
same authors that the suggested approximant has a series
expansion with finite radius of convergence and thus clar-
ified that the prediction is less accurate for small val-
ues of the perturbation parameter [33,46]. Mera et al.
resolved this issue via use of a hypergeometric-Borel tech-
nique for which the Borel functions are the hypergeomet-
ric functions pFp−1(a1, a2, . . . , ap; b1, b2, . . . bp−1; x). In
Refs. [43,44], we tried to resolve the same issue in a

123



Eur. Phys. J. C (2021) 81 :87 Page 3 of 13 87

simpler way as well as in a way to have approximants
that can employ the known parameters from the asymp-
totic behavior of the given divergent series. These param-
eters (representing strong-coupling and large-order asymp-
totic behaviors) are well known to accelerate the conver-
gence of the resummation process [1,4]. Our idea is based
on selecting the hypergeometric approximants that pos-
sesses all the known features of the given perturbation
series. We found that out of the hypergeometric approxi-
mants pFq(a1, a2, . . . , ap; b1, b2, . . . bp−2;−σ x), only the
hypergeometric functions pFp−2(a1, a2, . . . , ap; b1, b2, . . .

bp−2;−σ x) are able to be parametrized to give the known
weak-coupling information, the large-order asymptotic form
and the strong-coupling behavior of divergent series with an
n! growth factor. To elucidate the process more, consider a
perturbation series of a physical quantity Q for which the
first M + 1 terms are known:

Q (x) ≈
M∑

i=0

ci x
i . (1)

Assume that the asymptotic large-order behavior for the
series is also known to be of the form:

cn = αn!(−σ)nnb
(

1 + O

(
1

n

))
, n → ∞. (2)

As shown in Ref. [44], the hypergeometric series pFp−2(a1,

a2, . . . , ap; b1, b2, . . . bp−2;−σ x) can reproduce the same
large-order behavior with constraint on its numerator and
denominator parameters as:

p∑

i=1

ai −
p−2∑

i=1

bi − 2 = b. (3)

So the hypergeometric series pFp−2(a1, a2, . . . , ap; b1,

b2, . . . bp−2;−σ x) possesses all the known features of the
given series when matching order by order the first M + 1
coefficients from the perturbation series in Eq. (1) with the
first M+1 coefficients of the expansion of the hypergeomet-
ric function pFp−2(a1, a2, . . . , ap; b1, b2, . . . bp−2;−σ x).
This type of hypergeometric functions have the expansion:

pFp−2
(
a1, . . . ap; b1, . . . bp−2;−σ x

)

=
∞∑

n=0

�(a1+n)
�(a1)

. . .
�(ap+n)
�(ap)

n!�(b1+n)
�(b1)

. . .
�(bp−2+n)
�(bp−2)

(−σ x)n . (4)

Once parametrized by matching with the given series, the
divergent hypergeometric series is now known up to any order
and can be resummed by using its representation in terms of
the Meijer-G function of the form [47]:

pFq(a1, . . . ap; b1 . . . bq; x)

=
∏q

k=1 � (bk)∏p
k=1 � (ak)

G 1,p
p,q+1

(
1−a1,...,1−ap

0,1−b1,...,1−bq

∣∣∣ x
)
. (5)

The Meijer-G function, on the other hand, has the following
integral representation:

G m,n
p,q (

c1,...,cp
d1,...,dq | z) = 1

2π i∫

C

∏n
k=1 � (s − ck + 1)

∏m
k=1 � (dk − s)

∏p
k=n+1 � (−s + ck)

∏q
k=m+1 � (s − dk + 1)

zsds.

(6)

In fact, the left hand side of Eq. (5) is a divergent series
with zero radius of convergence. For the right hand side,
however, the integral representation in Eq. (6) is con-
vergent provided that the selected contour C is taken
from −i∞ to +i∞ [47] while the inequality p + q <

2(m + n) is satisfied. This inequality is satisfied for all

pFp−2(a1, . . . ap; b1 . . . bp−2; x) functions.
Note that for M even, M equations are generated by

matching with the available orders from the given perturba-
tion series to solve for M = (2p−2) unknown parameters in
the hypergeometric function. In the odd M case, we employ
the constraint in Eq. (3) to get M+1 equations to solve for the
M + 1 unknown parameters. In any case, we always need an
even number of equations to determine the 2p − 2 unknown
parameters.

To give an example, consider the lowest order approximant
(two-loops) 2F0(a1, a2; ;−σ x) when matched we get the
results:

−a1a2σ = c1

1

2
a1 (1 + a1) a2 (1 + a2) (−σ)2 = c2. (7)

These equations are solved for the unknown parameters
a1and a2 provided that the parameter σ is known from the
large-order behavior. Then we use the Meijer G-function rep-
resentation given by:

2F0 (a1, a2;−σ x) = 1

� (a1) � (a2)

G 1,2
2,1 ( 1−a1,1−a2

0 | − σ x, ) (8)

to obtain an approximant for the quantity Q(x) in Eq. (1) for
M = 2.

For the M = 3, we use the approximant (3F1(a1, a2, a3);
b1 ;−σ x) for which we have the equations:

− a1a2a3

b1
σ = c1,

1

2

a1 (1 + a1) a2 (1 + a2) a3 (1 + a3)

b1 (1 + b1)
(−σ)2 = c2,

1

6

a1 (1+a1) (2 + a1) a2 (1 + a2) (2 + a2) a3 (1 + a3) (2 + a3)

b1 (1 + b1) (2 + b1)
(−σ)3 = c3,

a1 + a2 + a3 − b1 − 2 = b, (9)
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to be solved for the four unknowns a1, a2, a3 and b1. Thus
we get the approximation of Q(x) as:

Q3(x)≈ �(b1)

� (a1) � (a2) � (a3)
G 1,3

3,2 ( 1−a1,1−a2,1−a3
0,1−b1

| − σ x).

(10)

These approximants are representing approximations to the
quantity Q(x) and thus they are always uncertain unless
we reached the exact resummation result for which Ql =
Ql+1 = . . . . Since this is not the case in most of the prob-
lems for a given M order of the given perturbation series, one
needs then to set a criteria for the error calculation which we
will pursue in the next subsection.

2.2 Error calculations

In literature, there are two main general approaches for the
error prediction. The principle of fastest apparent conver-
gence (PFAC), where one adopts the arbitrary resummation
parameters to minimize the difference |Ql − Ql−1|. Here
Ql is the lth resummation order of the quantity Q. Another
approach, is the principle of minimal sensitivity (PMS) for
which one selects a parameter α that makes the quantity Q(α)

less sensitive or stationary. A condition to approach this is
to find the optimal value of the arbitrary parameter α from
the relation ∂Q(α)

∂α
= 0 [32,48–50]. In fact, the resummation

procedure we described above seems to include no arbitrary
parameters as we have always a sufficient number of equa-
tions to solve for all the parameters. However, we can have
more than one approximant to approximate the same quan-
tity. For instance, the 7th order of the perturbation series of
Q can be approximated by the approximants:

(i) Q(x) ≈ 5F3(a1, a2, . . . , a5; b1, b2, b3; x)
(ii) Q(x) ≈ 1 + c1x (4F2(a1, a2, . . . , a4; b1, b2; x))

(iii) Q(x) ≈ 1+c1x+c2x2 +c3x3 (3F1(a1, a2, a3; b1; x))
(iv) Q(x) ≈ 1 + c1x + c2x2 + c3x3 + c4x4 + c5x5 (2F0

(a1, a2, ; ; x)) .

Likewise, the sixth order can be approximated by three
different approximants:

(a) Q(x) ≈ 4F2(a1, a2, . . . , a4; b1, b2; x)
(b) Q(x) ≈ 1 + c1x + c2x2 (3F1(a1, a2, a3; b1; x))
(c) Q(x) ≈ 1+c1x+c2x2+c3x3+c4x4 (2F0(a1, a2, ; ; x)) .

All these approximants are legal and can all be parametrized
to give the needed features of the given perturbation series.
One can then vary the arbitrary parameters k in the seventh
order approximant k Fk−2 and l in the sixth order approximant

l Fl−2 and selects the pair (k, l) that minimizes the quantity
|Qk(x) − Ql(x)|. In other words the pair (k, l) are chosen
to satisfy PFAC. The PFAC as well as PMS can be merged

to determine the error in the resummation result [32,48].
To do that for our resummation, we have to introduce arbi-
trary parameters into the approximants. For instance, one can
use the approximant 5F3(a1, a2, . . . , a5; b1, b2, b3; x) also
to approximate the eighth order series. However, in all cases
under investigation we have seven orders only and thus one
can have any of the eight parameters as an arbitrary one deter-
mined by PMS. We select one of the numerator parameters
ai as an arbitrary one for which one optimizes the quantity
Q(x, ai ) for its variation. The point is that the algorithm can
give good approximation for the strong-coupling parameters
(−ai ) [44] and thus we know them approximately from the
seventh order. So we can vary any of ai about their approx-
imate values obtained from the known seven-loop approxi-
mant. In Ref. [48,51], the following error formula:

�Q = |Qopt
l − Qopt

l−1|, (11)

has been used for error calculation and Qopt
l is taken as

the approximation for the quantity Q. Assume now we use
the approximant Q5(x) ≈ 4F2(a1, a2, . . . , a4; b1, b2; x) to
approximate the fifth order of the perturbation series. Assume
also that we take a1 as an arbitrary parameter. In fact one can
do that and find Qopt

5 (x) and also can find Qopt
6 (x) similarly

and calculate the error from the above formula. However,
all the parameters in 4F2(a1, a2, . . . , a4; b1, b2; x) can also
be found from the known sixth order. So instead of taking
Qopt

5 (x) we can replace it by Q6(x). Accordingly, we will
variate only for the last order approximant which can be con-
sidered as an approximation for the unknown seventh order
(say). Consequently, we shall apply a modified form for the
error as:

�Q = |Q6 − Q5|) + |Qopt − Q6|
2

, (12)

We will take as our approximate quantity for Q the quantity
(Q6 + Qopt )/2 assuming we have only known six orders
from the perturbation series. The formula we set for the error
merges the PFAC and PMS in a fair way as it links the last
three orders (Qopt

4 is replaced by Q5, Qopt
5 replaced by Q6

as explained above).
Let us detail the algorithm by considering a specific exam-

ple. The seven-loop perturbation series of the reciprocal of
the critical exponent ν for the self-avoiding walks (N = 0) is
given by Eq. (19) (below). We found that the pair of approx-
imants that best represents the sixth and seven loops is:

ν−1
7 ≈ 2 − 1

4
ε − 11

128
ε2

+ 0.114425ε3
3F1(a1, a2, , a3; b1;−σε),

ν−1
6 ≈ 2 4F2(a1, a2, . . . , a4; b1, b2;−σε), (13)

where they give the results ν7 = 0.587633, ν6 = 0.587439
for ε = 1 (three dimensions). For the optimization pro-
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Fig. 1 In this figure, we plot the three dimensional exponent ν of the
self-avoiding walks model (N = 0) approximated by the eight parame-
ters approximant

(
2 5F3(a1, a2, . . . , a5; b1, b2, b3; − 3

8 ε
)

versus a1 as
an arbitrary parameter

cess we use an approximant that has the maximum avail-
able number of parameters with only one numerator param-
eter taken arbitrary. In this case, it is the approximant
2 5F3(a1, a2, . . . , a5; b1, b2, b3;−σε) where in Fig. 1 we
plot the variation of this approximant versus one of the
numerator parameters while the other seven parameters are
determined from the seven coefficients in Eq. (19). The value
of ν at the optimized value of the parameter (minimum in
this figure) is considered as an approximation for the pre-
diction from the unknown eighth order. The parameter val-
ues are obtained as aopt1 = 6.00000, a2 = −1.18738, a3 =
−3.84527, a4 = −0.015973, a5 = 6.81113, b1 = 1.0881 −
1.06875i, b2 = b∗

1, b3 = −3.84360 and the optimized ν

exponent is then obtained from:

νopt = 2

∏3
i=1 � (bi )∏5
j=1 �

(
a j

)G 1,5
5,4

(
1−a1,...,1−a5

0,1−b1,1−b2,1−b3

∣∣∣−σε
)
. (14)

Our prediction for νopt is 0.587773 while the error is calcu-
lated from the relation:

�ν = (|ν7 − ν6|) + |νopt − ν7|)/2 = 0.000167. (15)

Accordingly the predicted value is ν = 0.58770(17). This is
a very precise result when compared to the conformal boot-
strap result ν = 0.5877(12) in Ref. [27]. In Sect. 4, we will
present the results for the exponents ν, η, ω for the cases
N = 0, 1, 2, 3, 4.

A more crucial test for our algorithm can be offered by
considering the two-dimensional (ε = 2) case where exact
results are well known. For this case we obtained the result
ν = 0.7512(39) which is compatible with the exact result
ν = 0.75 [52]. Taking into account that the two-dimensional
case is less convergent than the three dimensional one, our

result shows that our resummation results are very com-
petitive. More two-dimensional exponents are presented in
Sect. 5.

We will apply the above mentioned algorithm to resum the
ε7 series for the critical exponents of the O(N )-symmetric
model. Up to the best of our knowledge, the ε-expansion
for these exponents (for all N cases studied here and for the
same exponents) is not available so far in literature. So in the
following section, we shall extract them first from the recent
seven-loop calculations in Ref. [34].

3 ε-Expansion for the seven-loop critical exponents of
the O(N)-symmetric model

For the O(N )-vector model , the Lagrangian density is given
by:

L =1

2
(∂�)2 + m2

2
�2 + 16π2g

4! �4, (16)

where � = (φ1, φ2, φ3, . . . φN ) is an N-component field.
This Lagrangian obeys an O(N ) symmetry where �4 =(
φ2

1 + φ2
2 + φ2

3 + · · · φ2
N

)2
. In 4 − ε dimensions within the

minimal subtraction technique, Oliver Schnetz has obtained
the seven-loops order (g-expansion) for the renormalization
group functions β, γm2 and γφ [34]. Here β is the famous β-
function that determines the flow of the coupling in terms of
mass scale, γm2 is the mass anomalous dimension and γφ rep-
resents the field anomalous dimension. In the following sub-
sections, we list the corresponding seven-loop ε-expansion
for each individual exponent for the cases N = 0, 1, 2, 3, 4,
respectively.

3.1 The seven-loop ε-expansion for self-avoiding walks
(N = 0)

For N = 0, we have the results [34]:

β (g) ≈ −εg + 2.6667g2 − 4.6667g3 + 25.457g4

− 200.93g5 + 2004.0g6 − 23315g7 + 30387g8,

γφ (g) ≈ 0.05556g2 − 0.03704g3 + 0.19290g4−
1.0060g5 + 7.0946g6 − 57.739g7, (17)

γm2 (g) ≈ −0.66667g + 0.55556g2 − 2.0556g3

+ 10.762g4 − 75.701g5 + 636.73g6 − 6080.2g7.

The recipe to extract the corresponding ε-expansion is direct
where we solve the equation β (g) = 0 (fixed point) for
the critical coupling gc as a function of ε and then substi-
tute in the equations for γφ (gc) and γm2 (gC ). Note that the
critical exponents ν and η are obtained from the relations
ν = [

2 + γm2 (gc (ε))
]−1 and η (ε) = 2γφ (gc (ε)) while the
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correction to scaling exponent ω is given as ω = β
′
(gc). In

Ref. [53], the method of Lagrange inversion has been used
to get the exact seven-loop ε-expansion coefficients and has
been applied to the N = 1 case but there the series has been
obtained for ν while here we list the series for ν−1. How-
ever, here we will obtain the ε-series by solving the equation
β (g) = 0 implicitly and then expand the implicit solution
as a power series in ε keeping only orders up to O(ε7). As
we will see, our results are compatible with those obtained
in Ref. [53] for η and ω for N = 1. For ν−1, η and ω for
N = 0, 1, 2, 3 and 4, we found that our results are compati-
ble with the five-loop results available in Ref. [4] and six-loop
series (after proper scaling) in Ref. [32].

For N = 0 and after solving the equation β(g(ε))=0, we
get the result:

gc = 0.37500 ε + 0.24609ε2 − 0.18043ε3 + 0.36808ε4

−1. 2576ε5 + 5.0625ε6 − 23. 392ε7, (18)

and

ν−1 = 2.0000 − 0.25000ε − 0.08594ε2 + 0.11443ε3

−0.28751ε4 + 0.95613ε5 − 3.8558ε6 + 17.784ε7,

(19)

η = 0.015625ε2 + 0.016602ε3 − 0.0083675ε4

+0.026505ε5 − 0.090730ε6 + 0.37851ε7,

(20)

ω = 1.0000ε − 0.65625ε2 + 1.8236ε3 − 6.2854ε4

+26.873ε5 − 130.01ε6 + 692.10ε7. (21)

3.2 The ε-expansion for Ising-like model(N = 1)

In this case, the seven-loop β-function is presented in Ref.
[34] as:

β (g) ≈ −εg + 3.0000g2 − 5.6667g3 + 32.550g4

−271.61g5 + 2848.6g6 − 34776g7 + 474650g8,

(22)

and

γm2 (g) ≈ −g + 0.83333g2 − 3.5000g3 + 19.956g4

−150.76g5 + 1354.6g6 − 13760g7, (23)

while

γφ (g) ≈ 0.08333g2 − 0.06250g3 + 0.33854g4 − 1.9256g5

+14.384g6 − 124.16g7. (24)

Solving the equation β (g) = 0, we get the critical coupling
as:

gc = 0.33333ε + 0.20988ε2 − 0.13756ε3 + 0.26865ε4

−0.84368ε5 + 3.1544ε6 − 13.483ε7.

Substituting this form inγm2 (gc) and keep orders up to O(ε7)

only we get:

ν−1 = 2.0000 − 0.33333ε − 0.11728ε2

+ 0.12453ε3 − 0.30685ε4

+ 0.95124ε5 − 3.5726ε6 + 15.287ε7. (25)

Similarly, the forms for η and ω can be obtained as:

η=0.018519ε2+0.018690ε3 − 0.0083288ε4+0.025656ε5

−0.081273ε6 + 0.31475ε6, (26)

ω = ε − 0.62963ε2 + 1.6182ε3 − 5.2351ε4 + 20.750ε5

−93.111ε6 + 458.74ε7. (27)

3.3 The ε-expansion for N = 2 (XY universality class)

For N = 2, the renormalization group functions are obtained
in Ref. [34] as:

β ≈ −εg + 3.3333g2 − 6.6667g3+39.948g4−350.51g5

+3844.5g6 − 48999g7 + 6.9700 × 105g8,

(28)

γm2 ≈ −1.3333g + 1.1111g2 − 5.2222g3 + 31.871g4

−255.85g5 + 2433.7g6 − 26086g7,

(29)

γφ ≈ 0.11111g2 − 0.09259g3 + 0.5093g4

−3.1481g5 + 24.706g6 − 224.57g7. (30)

We extracted from these equations the following forms for
gc and the exponents ν, η and ω :
gc = 0.30000ε + 0.18000ε2 − 0.10758ε3

+0.20502ε4 − 0.59124ε5

+2.0719ε6 − 8.2614ε7, (31)

ν−1 = 2.0000 − 0.40000ε − 0.14000ε2 + 0.12244ε3

−0.30473ε4 + 0.87924ε5 − 3.1030ε6 + 12.419ε7,

(32)

η = 0.020000ε2 + 0.019000ε3

−0.0078936ε4 + 0.023209ε5

−0.068627ε6 + 0.24861ε7, (33)

and

ω = ε − 0.60000ε2 + 1.4372ε3 − 4.4203ε4 + 16.374ε5

−68.777ε6 + 316.48ε7. (34)
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3.4 The ε-expansion for the exponents ν, ω and η in the
Heisenberg universality class (N = 3)

The renormalization group functions can be generated using
the maple package in Ref. [34] as:

β (g) ≈ −εg + 3.6667g2

−7.6667g3 + 47.651g4 − 437.65g5

+4998.6g6 − 66243.g7 + 9.7833 × 105g8, (35)

γφ ≈ 0.13889g2 − 0.12731g3 + 0.69927g4

−4.6892g5 + 38.436g6 − 365.90g7,

(36)

and

γm2 (g) ≈ −1.6667g + 1.3889g2 − 7.2222g3

+46.637g4 − 394.91g5 + 3949.9g6 − 44412g7. (37)

From these functions, one can obtain the following forms for
the critical quantities gc, ν, η and ω as:

gc = 0.27273ε + 0.15552ε2 − 0.086255ε3 + 0.16154ε4

−0.42963ε5 + 1.4210ε6 − 5.3221ε7, (38)

ν−1 = 2.0000 − 0.45455ε − 0.15590ε2

+0.11507ε3 − 0.29360ε4 (39)

+0.78994ε5 − 2.6392ε6 + 9.9452ε7,

η = 0.020661ε2 + 0.018399ε3 − 0.0074495ε4

+0.020383ε5 − 0.057024ε6 + 0.19422ε7, (40)

and

ω = 1.0000ε − 0.57025ε2 + 1.2829ε3 − 3.7811ε4

+13.182ε5 − 52.204ε6 + 226.02ε7. (41)

3.5 The seven-loop ε-expansion for the O(4)-symmetric
case

For N = 4, we have the seven-loops g-series as :

β (g) ≈ −εg + 4.0000g2 − 8.6667g3

+55.661g4 − 532.99g5

+6317.7g6 − 86768g7 + 1.3264 × 106g8, (42)

γm2 (g) ≈ −2.0000g + 1.6667g2 − 9.5000g3 + 64.389g4

−571.88g5 + 5983.4g6 − 70240g7, (43)

and

γφ ≈ 0.16667g2 − 0.16667g3 + 0.90278g4

−6.5626g5 + 55.931g6 − 555.19g7. (44)

Our prediction for the corresponding ε-expansion for the crit-
ical coupling and exponents are of the form:

gc = 0.25000ε + 0.13542ε2 − 0.070723ε3 + 0.13030ε4

−0.32185ε5 + 1.0099ε6 − 3.5738ε7,

ν−1 = 2.0000 − 0.50000ε − 0.16667ε2

+0.10586ε3 − 0.27866ε4

+0.70217ε5 − 2.2337ε6 + 7.9701ε7, (45)

η = 0.020833ε2 + 0.017361ε3 − 0.0070852ε4

+0.017631ε5 − 0.047363ε6 + 0.15219ε7, (46)

and

ω = ε − 0.54167ε2 + 1.1526ε3 − 3.2719ε4

+10.802ε5 − 40.567ε6 + 166.26ε7. (47)

It is well known that the ε-series is divergent and has an
asymptotic large-order behavior of the type shown in Eq. (2)
where [4]: σ = − 3

N+8 , bν−1 = 4+ N
2 , bη = 3+ N

2 and bω =
5 + N

2 . Accordingly, the suitable hypergeometric approxi-
mant is of the form pFp−2(a1, a2, . . . , ap; b1, b2, . . . bp−2

;−σ x). In the following section, we list the three dimen-
sional (ε=1) resummation results for N = 0, 1, 2, 3, 4 cases
for the exponents ν, η and ω within the O(N )-symmetric φ4

model. Note that, although we considered the coefficients in
the ε-series up to five significant figures, we made sure that
increasing the number of digits is insignificant within the
obtained accuracy.

4 hypergeometric-Meijer resummation of the ε7

perturbation series

In this section, we present the resummation results for the ε7-
series but numerical values in this section are for ε = 1. For
the series representing ν−1 in Eqs. (19, 25, 32, 39, 45), the
suitable approximants are chosen to minimize the difference
�ν = |ν7,k − ν6,ḱ | where k, ḱ are integers characterizing the
hypergeometric approximant used. Then, one optimizes for
one of the numerator parameters as we explained in Sect. 2.
For optimization, we select the approximant:

ν−1
opt = 2 5F3

(
aopt1 , a2, . . . , a5; b1, b2, b3;−σε

)
(48)

as the one that maximizes the number of parameters with
only one of them to be taken arbitrary. Our prediction for
the critical exponent ν is taken as ν = (ν7 + νopt )/2 while
the error is calculated using the formula (|ν7,k − ν6,ḱ | +
νopt − ν7,k |)/2. The recipe is also taking into account the
analytic continuation of the divergent hypergeometric series

k Fk−2(a1, . . . ak; b1, b2, . . . bk;−σε) as:

k Fk−2 (a1, . . . ak; b1, b2, . . . bk−2;−σε)

=
∏k−2

i=1 � (bi )∏k
j=1 �

(
a j

)G 1,k
k,k−1(

1−a1,...,1−ak
0,1−b1,1−b2,...1−bk−2

| − σε).

(49)
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The same recipe will be followed for the series representing
the critical exponent ω in Eqs. (21, 27, 34, 41, 47) except that
the approximant taken for optimization is

ωopt = 5F3

(
aopt1 , a2, . . . , a5; b1, b2, b3;−σε

)
− 1. (50)

For the series given for the exponent η in Eqs. (20, 26, 33,
40, 46), we also follow the same recipe but with optimizing
the approximant:

ηopt = 5F3(a1, a2, . . . , a5; b1, b2, b3;−σε)

−
(

1 − σε

∏5
j=1 a j

∏3
i=1 bi

)
. (51)

In the following, a subsection will be dedicated to the resum-
mation of the exponents for every N .

4.1 Seven-loop (ε7) Resummation results for
self-avoiding walks (N = 0)

The seven-loop series for the reciprocal of the critical expo-
nent ν is represented by Eq. (19). As detailed in Sect. 2,
we found the suitable pair of approximants for the six and
seven loops as in Eq. (13) from which we obtained the results
ν7 = 0.587633, ν6 = 0.587439 while our optimized result
is νopt = 0.587773. These results lead to our prediction as
ν = 0.58770(17) which is compatible with the recent con-
formal bootstrap result ν = 0.5877(12) in Ref. [27] and also
very close to the most precise result ν = 0.5875970(4) from
Monte Carlo simulations in Ref. [15].

For the critical exponent ω represented by the series in
Eq. (19), we found that the best pair of approximants that
represent the six as well as the seven loops is:

ω7 = ε − 0.65625ε2 + 1.82361ε3
3F1(a1, a2, a3; b1;−σε),

ω6 = ε − 0.65625ε2
3F1(a1, a2, a3; b1;−σε). (52)

This pair has been chosen to minimize the difference
�ω6,7 = |ω7 − ω6|. Note that the parameters in each
approximants are not the same but they take their own val-
ues based on matching expansions up to each order. This
gives the results ω6 = 0.846452, ω7 = 0.846974 while the
optimized exponent is given by ωopt = 0.84990. Accord-
ingly, our prediction is ω = 0.8484(17). In fact, the cal-
culations from Monte Carlo simulations in Ref. [15] gives
the result ω = �1

ν
= 0.899(12) while the six-loop Borel

with conformal mapping resummation [32] turns the result
ω = 0.841(13).

For the critical exponent η, it has the seven-loop pertur-
bation series in Eq. (20) and the suitable approximants are:

η7 = ε ( 4F2(a1, a2, a3, a4; b1, b2;−σε) − 1) ,

η6 = 1

64
ε2

3F1(a1, a2, a3; b1;−σε), . (53)

Table 1 The seven-loop (ε-expansion) hypergeometric-Meijer
(ε7;HM) resummation results for the exponents ν, η and ω of the
self-avoiding walks model (N = 0). The recent predictions of what is
called self-consistent (SC) resummation algorithm introduced in Ref.
[54] is also listed in the table. Besides, we list results from conformal
bootstrap (CB) calculations [27], Monte Carlo simulation (MC) for ν

from Refs. [14,32] and η from Ref. [15]. Also the predictions of the
resummation of six-loop series using Borel with conformal mapping
(BCM) algorithm (ε6) from Ref. [32] and five-loop (ε5) from same
reference is included

Method ν η ω

ε7; HM: this work 0.58770(17) 0.03121(70) 0.8484(17)

SC 0.5874(2) 0.0304(2) 0.846(15)

CB 0.5877(12) 0.0282(4) –

MC 0.5875970(4) 0.031043(3) 0.899(12)

ε6: BCM 0.5874(3) 0.0310(7) 0.841(13)

ε5: BCM 0.5873(13) 0.0314(11) 0.835(11)

These Parametrizations give the result η6 = 0.030336, η7 =
0.030694 while the optimized value is ηopt = 0.0317405.
Accordingly, our result is η = 0.03121(70). The bootstrap
calculations gives the result η = 2�φ − 1 = 0.0282(4) [27]
and the Monte Carlo result is η = 0.031043(3) [14,32].

For comparison with the predictions from different other
methods, our results for the three exponents are listed again
in Table 1.

4.2 Seven-loop resummation results for Ising-like
universality class ( N = 1)

The perturbation series for critical exponent ν(ν−1) of the
Ising-like model up to ε7 is given by Eq. (25). The suitable
approximants for six and seven loops are:

(ν6)
−1 = 2 4F2(a1, a2, a3, a4; b1, b2;−σε),

(ν7)
−1 = 2 5F3(a1, a2, . . . , a5; b1, b2, b3;−σε). (54)

These approximants give the results ν6 = 0.629374, ν7 =
0.629732 while νopt = 0.629809. Accordingly, our predic-
tion is ν = 0.62977(22). To get an idea about how accurate
this result is, we list here results from recent non-perturbative
methods like the Monte Carlo simulations which gives the
result ν = 0.63002(10) [12], the recent non-perturbative
renormalization group (NPRG) method [28] which turns the
result ν = 0.63012(16) as well as the recent conformal boot-
strap result ν = 0.62999(5) in Ref. [24]. In view of these non-
perturbative calculations and in looking at Table 2, one can
realize that the seven-loop resummation results has improved
significantly the six-loop results. In fact, this is a general trend
in all of the seven-loop calculations in this work.
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Table 2 The seven-loop (ε-expansion) hypergeometric-Meijer resum-
mation results (ε7;HM) for the exponents ν, η and ω of the Ising-like
model (N = 1). The recent SC resummation results are listed for com-
parison. Also we list conformal bootstrap calculations from Ref. [24]
and Monte Carlo simulation (MC) from Ref. [12]. In this table also,
we list the six-loop (ε6) resummation results from the Borel with con-
formal mapping (BCM) from Ref. [32] and five-loops (ε5) from same
reference. The recent results from the non-perturbative renormalization
group (NPRG) method [28] is listed last

Method ν η ω

ε7; HM: this work 0.62977(22) 0.03653(65) 0.82311(50)

SC 0.6296(3) 0.0355(3) 0.827(13)

CB 0.62999(5) 0.03631(3) 0.8303(18)

MC 0.63002(10) 0.03627(10) 0.832(6)

ε6: BCM 0.6292(5) 0.0362(6) 0.820(7)

ε5: BCM 0.6290(20) 0.0366(11) 0.818(8)

NPRG 0.63012(16) 0.0361(11) 0.832(14)

For the exponent η, the suitable approximants are:

η7 = 0.018519ε2 + 0.018690ε3 − 0.0083288ε4

+ 0.025656ε5
2F0(a1, a2; ;−σε),

η6 = 0.018519ε2
3F1(a1, a2, a3; b1;−σε), . (55)

which give the result η6 = 0.0354512, η7 = 0.0363063.
Also our optimized result is ηopt = 0.0367504 and
all of these results lead to the predicted value ν =
0.03653(65) compared to Monte Carlo simulation result of
η = 0.03627(10), NPRG result η = 0.0361(11) [28] and
conformal bootstrap calculation of η = 0.03631(3) [24] .

For the correction to scaling exponent ω, the up to seven-
loop order of perturbation series is given by Eq. (27). The
approximants used are

ω7 = 5F3(a1, a2, . . . , a5; b1, b2, b3;−σε) − 1,

ω6 = ε − 0.62963ε2
3F1(a1, a2, a3; b1;−σε), (56)

where we get the results ω6 = 0.823572, ω7 = 0.823592
while we get the optimized result ωopt = 0.822619. Thus
our prediction for the ω exponent is ω = 0.82311(50).
NPRG method gives the result ω = 0.832(14) [28] while
conformal bootstrap has the result ω = 0.8303(18) [24] and
Monte Carlo simulations predicts the value ω = 0.832(6)

[12]. Comparison with the predictions from more different
methods is listed in Table 2.

4.3 Seven-loop resummation results for XY universality
class ( N = 2)

For N = 2, the perturbation series up to ε7 for the critical
exponent ν is given by Eq. (32) while our suitable approxi-

mants are

(ν6)
−1 = 2 − 0.4 ε − 0.14000 ε2

3F1(a1, a2, a3; b1;−σε),

(ν7)
−1 = 2 − 0.4 ε 4F2(a1, . . . a4; b1, b2;−σε). (57)

These approximants give the results ν6 = 0.671347, ν7 =
0.670934 while the optimized value is νopt = 0.670582.
These results all predict the value ν = 0.67076(38) as our
result for the ν exponent for N = 2. Our prediction is com-
patible with the result from the microgravity experiment of
ν = 0.6709(1) [31,45]. Also, it is very close (but not com-
pletely compatible) to the more precise Monte Carlo result
which is ν = 0.67169(7) [21] and the very recent boot-
strap result ν = 0.67175(10) [30,31]. To compare with more
other works, we mention that the NPRG yields the predic-
tion ν = 0.6716(6) [28] while the recent conformal bootstrap
prediction is ν = 0.6719(11) [26].

A note to be mentioned here is that our prediction of
ν = 0.67076(38) leads to the result α = −0.0123(11) where
α is the critical exponent associated with the singularity in
specific heat. The zero gravity liquid helium superfluid tran-
sition experiment gives the result −0.0127(3) [45] which is
compatible with our result. In taking into account that the
six-loop Borel with conformal mapping resummation result
is α = −0.007(3), one can realize the significant improve-
ment the resummation of the seven-loop adds. However, nei-
ther our result nor the experimental results are compatible
with MC [21] or CB [30,31] calculations.

For the critical exponent η, the seven-loop series is given in
Eq. (20). The suitable hypergeometric-Meijer approximants
are:

η7 = ε ( 4F2(a1, a2, a3, a4; b1, b2;−σε) − 1) ,

η6 = 0.02ε2
3F1(a1, a2, a3; b1;−σε). (58)

These approximants give the results η6 = 0.0373266, η7 =
0.037753 while ηopt = 0.038448. Thus our prediction is
η = 0.03810(56). The NPRG method predicted the value
η = 0.0380(13) [28], Monte Carlo simulations in Ref. [21]
gives the result η = 0.03810(8) and conformal bootstrap has
the prediction η = 0.03852(64) [26].

For the resummation of the critical exponent ω given by
Eq. (34), we used the approximants:

ω7 = 5F3(a1, . . . , a5; b1, b2, b3;−σε) − 1,

ω6 = ε − 0.6ε2
3F1(a1, a2, a3; b1;−σε), (59)

where they give the results ω6 = 0.803962, ω7 = 0.801541.
Also, we get ωopt = 0.776887. So our prediction is
ω = 0.789(13). The result ω = 0.789(4) has been shown
using recent Monte Carlo calculations [21] and the predic-
tion of conformal bootstrap calculations yields the result
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Table 3 The hypergeometric-Meijer (ε7;HM) resummation results for
the exponents ν, η and ω of the O(2)-symmetric model. The recent
SC results are taken from Ref. [54]. Other predictions are listed from
conformal bootstrap calculations [30,31] for ν and η [26], while ω result
is taken from Refs. [25,32] and MC calculations from Ref. [21]. The
six-loop BCM resummation (ε6) from Ref. [32] and the five-loops (ε5)
from same reference. In the last row we add the NPRG results up to
O(∂4) [28]

Method ν η ω

ε7; HM: this work 0.67076(38) 0.03810(56) 0.789(13)

SC 0.6706(2) 0.0374(3) 0.808(7)

CB 0:67175(10) 0.03852(64) 0.811(10)

MC 0.67169(7) 0.03810(8) 0.789(4)

ε6: BCM 0.6690(10) 0.0380(6) 0.804(3)

ε5: BCM 0.6687(13) 0.0384(10) 0.803(6)

NPRG 0.6716(6) 0.0380(13) 0.791(8)

ω = 0.811(10) [25,32] while the recent NPRG result is
ω = 0.791(8) [28].

In Table 3, we list predictions from more different methods
for the three exponents beside our predictions.

4.4 Seven-loop resummation results for Heisenberg
universality class ( N = 3)

For the case of the Heisenberg universality class ( N = 3), the
reciprocal of the critical exponent ν has the ε7 perturbation
series given by Eq. (39). The approximants that minimize the
difference �ν = |ν7 − ν6| are found to be:

(ν6)
−1 =2−0.45455ε−0.15590ε2

3F1(a1, a2, a3; b1;−σε),

(ν7)
−1 = 2 − 0.45455ε − 0.15590ε2 + 0.115071ε3

3F1(a1, a2, a3; b1;−σε). (60)

The parametrization of these approximants leads to the pre-
dictions ν6 = 0.709151, ν7 = 0.709212 while our opti-
mized result is νopt = 0.708906. These results all together
give the prediction ν = 0.70906(18). The conformal boot-
strap calculations gives the value ν = 0.7121(28) [26]
while the Monte Carlo simulations in Ref. [13] gives the
result ν = 0.7116(10) and the NPRG method has the value
ν = 0.7114(9) [28].

The series up to ε7 for the exponent η is given in Eq. (40)
where it has been approximated using:

η7 = ε ( 4F2(a1, a2, a3, a4; b1, b2;−σε) − 1) ,

η6 = 5

242
ε2

3F1(a1, a2, a3; b1;−σε). (61)

These approximations yield the prediction η6 = 0.0373004,

η7 = 0.0376457 while ηopt gives the result 0.0385369.

Table 4 The seven-loop (ε7) hypergeometric-Meijer resummation for
the exponents ν , η and ω of the O(3)-symmetric model. Also we list
the SC resummation results from Ref. [54]. The recent results from
conformal bootstrap calculations are listed also where the values of ν

and η are taken from Ref. [26] while ω from Refs. [25,32]. For MC
simulations ω is taken from from Ref. [17] while ν and η are taken
from from Ref. [13]. The six-loop BCM resummation is taken from
Ref. [32] and five-loops from same reference. As in all of above tables,
we list in the last row the very recent calculations from NPRG method
[28] (up to O(∂4))

Method ν η ω

ε7; HM: this work 0.70906(18) 0.03809(62) 0.764(18)

SC 0.70944(2) 0.0373(3) 0.794(4)

CB 0.7121(28) 0.0386(12) 0.791(22)

MC 0.7116(10) 0.0378(3) 0.773

ε6: BCM 0.7059(20) 0.0378(5) 0.795(7)

ε5: BCM 0.7056(16) 0.0382(10) 0.797(7)

NPRG 0.7114(9) 0.0376(13) 0.769(11)

Accordingly, we have our prediction as η = 0.03809(62)

compared to η = 0.0386(12) from bootstrap calculations
in Ref. [26], η = 0.0376(13) from NPRG in Ref. [28] and
η = 0.0378(3) predicted by Monte Carlo simulations in Ref.
[13] .

The seven-loop ε-expansion for the exponent ω has been
obtained in the previous section in Eq. (41). This series
has been resummed through the use of the hypergeometric
approximants:

ω7 = ε − 0.570248ε2 + 1.2829ε3
3F1(a1, a2, a3; b1;−σε),

ω6 = ε − 0.570248ε2 + 1.2829ε3 − 3.78111ε4

2F0(a1, a2; ;−σε), (62)

where they give the results ω6 = 0.761533, ω7 = 0.775002.
Also, we obtained the result ωopt = 0.752398. Accord-
ingly, our results for the correction to scaling exponent is
ω = 0.764(18). For comparison, we list here the value ω =
0.791(22) from conformal bootstrap calculations [25,32],
ω = 0.773 from Monte Carlo simulations [17] and ω =
0.769(11) from NPRG method [28].

In Table 4, we list more results from other methods to
make it clear that the hypergeometric-Meijer resummation
algorithm though simple is competitive to other more sophis-
ticated algorithms and methods.

4.5 Seven-loop resummation results for the N = 4 case

Similar to the above cases, the seven-loop perturbation series
for the exponent ν has been obtained in the previous section
in Eq. (45). The best choice for approximating the six and
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seven-loop series is:

(ν6)
−1 = 2 − 0.50000ε − 0.16667ε2

+ 0.10586ε3 − 0.278661ε4
2F0(a1, a2; ;−σε),

(ν7)
−1 = 2 − 0.50000ε − 0.16667ε2

+ 0.10586ε3
3F1(a1, a2, a3; b1;−σε). (63)

These approximations lead to the valuesν6 = 0.744328, ν7 =
0.744488. Besides, we get the optimized result as νopt =
0.744017. Accordingly, we have the result ν = 0.74425(32).
The NPRG prediction is ν = 0.7478(9) from Ref. [28]. Also
the conformal bootstrap result is ν = 0.751(3) from Ref. [25]
and Monte Carlo simulations gives the result ν = 0.750(2)

[13].
For the critical exponent η with perturbative result in

Eq. (46), we used the approximants:

η7 = ε ( 4F2(a1, a2, a3, a4; b1, b2;−σε) − 1) ,

η6 = 1

48
ε2

3F1(a1, a2, a3; b1;−σε). (64)

So we have the results η6 = 0.0362091, η7 = 0.0364162,

ηopt = 0.0369761 which lead to our prediction η =
0.03670(38). The NPRG result is η = 0.0360(12) [28]
and Monte Carlo simulations for that case gives the result
η = 0.0365(3) [13] while recent bootstrap calculations gives
the value 0.0378(32) [23].

For the critical exponent ω represented by Eq. (47), we
used the approximants:

ω7 = 5F3(a1, . . . , a5; b1, b2, b3;−σε) − 1,

ω6 = ε − 0.54167ε2 + 1.1526ε3

− 3.2719ε4
2F0(a1, a2; ;−σε), (65)

which yields the results ω6 = 0.753489, ω7 = 0.75285.
Also, we have the optimized result as ωopt = 0.750977.
Accordingly, our result is ω = 0.7519(13) compared to
NPRG result of ω = 0.761(12) [28] while the result of
Monte Carlo simulation in Ref. [17] is ω = 0.765 and ω =
0.817(30) from conformal bootstrap calculations [25,32].

5 Two-dimensional hypergeometric-Meijer
resummation

In two dimensions or equivalently ε = 2, there are two main
differences from the three dimensional case. The first is that
for N ≥ 2, there is no broken-symmetry phase [37]. For the
other difference, since ε = 2 is a large value and the strong-
coupling asymptotic behavior of the O(N ) symmetric model
is not known yet, one expects a slower convergence of the

Table 5 The seven-loop (ε7) hypergeometric-Meijer resummation for
the exponents ν , η and ω of the O(4)-symmetric model compared
to results from the SC resummation in Ref. [54], conformal bootstrap
calculations [25,32] for ν and ω , while η from Ref [23], MC simulations
for ω is taken from Ref. [17] while ν and η are from Ref. [13]. Also, the
six-loop BCM resummation (ε6) is taken from Ref. [32] and five-loops
(ε5) from same reference. NPRG results up to O(∂4) [28] are shown in
the last row

Method ν η ω

ε7; HM: this work 0.74425(32) 0.03670(38) 0.7519(13)

SC 0.7449(4) 0.0363(2) 0.7863(9)

CB 0.751(3) 0.0378(32) 0.817(30)

MC 0.750(2) 0.0360(3) 0.765 (30)

ε6: BCM 0.7397(35) 0.0366(4) 0.794(9)

ε5: BCM 0.7389(24) 0.0370(9) 0.795(6)

NPRG 0.7478(9) 0.0360(12) 0.761(12)

resummation of the perturbation series. For the g expansion,
it has been argued that the β function is not analytic at the
fixed point [36,37,55] which in turn slows the convergence
down too. The effect of the non-analiticity of the β func-
tion is higher in two dimensions. This leads to inaccurate
predictions for critical exponents from the g expansion in
two dimensional case [36]. Accordingly, testing the resum-
mation algorithm for the ε = 2 case offers an interesting
point about the capability of the ε-expansion to predict reli-
able results for that case. Apart from inaccurate resummation
results from the g-expansion as well as previous results of
the ε-expansion that needs more improvement, exact values
for the two dimensional critical exponents are known and
thus can be used to test the reliability of any approximating
method.

For N = 0, our resummation result for the critical expo-
nent ν is 0.751(4) which is compatible with the exact result
assumed to be 0.75 [52]. Note that the recent Borel with con-
formal mapping resummation for six-loop yields the result
ν = 0.741(4) [32].

For the critical exponent ω, our prediction is 1.96(46)

while the exact value is 2 [52,56] and the recent six-loop
resummation in Ref. [32] gives the result 1.90(25).

For η, we get the value 0.214(28) while the exact result is
( 5

24 ) ≈ 0.20833... [52] and the six-loop resummation (BCM)
result is 0.201(25) [32]. One can realize that our predic-
tions show a clear improvement for the previous resumma-
tion results in literature.

For Ising-like case (N = 1), we obtained the result ν =
0.976(13) compared to the well known exact result ν = 1
[57] while BCM result for six loops gives the value ν =
0.952(14). For ω we get the result 1.71(10) while the exact
value is ω = 1.75 [58] and BCM result is 1.71(9). Our
prediction for η is 0.243(25) while the exact value is 0.25
[52] and the six-loop BCM resummation result is 0.237(27).
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Table 6 The seven-loop (ε7) hypergeometric-Meijer resummation for
the exponents ν , η and ω for the Self-avoiding walks (N = 0) and the
Ising-like model (N = 1) in two dimensions (ε = 2). For comparison
with other predictions, we list the results from BCM algorithm [32]
for six loops. Exact results for N = 1 for ν and η are obtained in the
seminal article in Ref. [57] and ω from Ref. [58]. For N = 0, exact
values for ν, η and ω are conjectured in Ref. [52]

N ν η ω Method

0 0.751(4) 0.214(28) 1.96(46) ε7; HM: this work

0.741(4) 0.201(25) 1.90(25) ε6: BCM

0.75 0.20833... 2 Exact

1 0.976(13) 0.243(25) 1.71(10) ε7; HM: this work

0.952(14) 0.237(27) 1.71(9) ε6: BCM

1 0.25 1.75 Exact

6 Summary and conclusions

The recent calculations of the seven-loop renormalization
group functions of the O(N )-symmetric field theory (g-
expansion) have motivated us to generate the corresponding
ε-expansion for the critical exponents ν, η and ω. Scaling
relations can lead to other different critical exponents like
the specific heat singularity exponent where it is given by
α = 2 − Dν with D = 4 − ε, the Euclidean space-time
dimension. Getting the seven-loop order of the ε-expansion
is important toward the improvement of the previous six-
loop resummation results [32,43]. In this work, we used our
hypergeometric-Meijer algorithm [43,44] to resum the up to
ε7 series for the critical exponents from the O(N )-symmetric
φ4 theory for N = 0, 1, 2, 3, 4. The resummation results has
shown clear improvement for the previous six-loop results.
The most reflecting quantity for the improvement of the six-
loop results is the specific heat critical exponent of the XY
model. Taking into account that the result α = −0.0127(3)

from zero-gravity experiment in Ref. [45], the BCM six-loop
result from Ref. [32] which is α = −0.007(3) as well as our
six-loop resummation in Ref. [43] that gives α = −0.00886,
one can easily realize the discrepancy between expected and
so far calculated results from resummation of the ε-expansion
of RG functions. Even the resummation of the seven-loop g-
expansion gives the result α = −0.00859 which in turn is
still far away from the expected result. In view of our seven-
loop result α = −0.0123(11) in this work and the mentioned
previous results, one can claim that the resummation of the
seven-loop ε-expansion in this work is more than important.

While the predictions of the renormalization group at
fixed dimensions gives accurate results in three-dimensions
[4,29], the story is different for the two dimensional cases. In
two dimensions, the renormalization group at fixed dimen-
sions gives inaccurate results especially for the critical expo-
nents of small values [35,36]. The reason behind this is the

nonanaliticity of the β-function at the fixed point [32,36,37].
The ε-expansion on the other hand might not suffer from
this problem [41]. We tested our resummation results in two
dimensions and found an overall improvements to our six-
loop resummation results in Ref. [43].

Our algorithm while simple gives astonishing results for
the critical exponents which are competitive to the results
from more sophisticated resummation algorithms, numerical
methods as will as conformal field theory. This puts it among
the preferred resummation algorithms applied to different
problems in physics. A note to be mentioned here is that
this work (up to the best of knowledge) represents the first
resummation results for the ε7 series in literature.
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