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Abstract: Background: Ketamine HCl, an FDA-approved therapeutic, is administered through
various routes, including intranasal delivery. Administering an adequate therapeutic dose of in-
tranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally
given the current commercially available concentrations. Objectives: This study investigates solu-
bilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.
Methods: We assessed the solubility profile of ketamine HCl by evaluating factors such as pH, co-
solvents, and surfactants. Additionally, we developed and validated a UV-Vis spectroscopy method
for ketamine HCl analysis. Results: Our solubility screening in various organic co-solvents revealed
the following order of effectiveness in enhancing solubility: methanol > water > propylene glycol >
ethanol > dimethyl sulfoxide (DMSO) > N-methyl-2-pyrrolidone (NMP). Despite methanol’s superior
solubility, its potential toxicity, coupled with the relatively lower effectiveness of other solvents com-
pared to water, suggests that a co-solvency approach is not advantageous for ketamine HCl. We found
that ketamine HCl solubility increased with medium acidity, with pH 3.5 being the optimal for further
formulation studies. The impact of pharmaceutical surfactants on ketamine HCl solubility at an acidic
pH was also evaluated. Surfactants tested included SDS, PEG 400, PVP, Tween 20, poloxamer 188,
and lecithin. Notably, PEG 400 and PVP reduced solubility due to a salting-out effect, whereas Tween
80, lecithin, and poloxamer 188 slightly improved solubility through micelle formation. Among
the surfactants tested, 1% SDS emerged as the most effective in enhancing ketamine HCl solubility.
Conclusions: These outcomes highlight the potential of these solubilization strategies to address the
solubility limitations of ketamine HCl, enabling the preparation of highly concentrated ketamine HCl
formulations for intranasal delivery.

Keywords: ketamine HCl; solubility; sodium dodecyl sulfate; solvent; intranasal delivery

1. Introduction

In the 1950s, Parke-Davis industries initiated the search for an ideal anesthetic product
with analgesic potential among the derivatives of phencyclidine drugs [1]. Among these
trials, the synthesis of ketamine had emerged in the 1960s [2,3]. Ketamine, also named
2-O-chlorophenyl-2-methylamino cyclohexanone, is an approved pharmaceutical by the
Food and Drug Administration (FDA) and possesses a chemical formula of C13H16ClNO [4].
Moreover, ketamine consists of a central chiral carbon, thus enabling two different steric
configurations. Furthermore, ketamine is a racemic mixture that consists of equal amounts
of two enantiomers, (S)-ketamine and (R)-ketamine (Figure 1) [5]. These two enantiomers
have different affinities for different receptors, and consequently somewhat different clinical
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profiles [5–7]. For instance, the FDA approved an intranasal (S)-ketamine formulation
(Spravato®) as an antidepressant drug in 2019 [8–10].
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As a pharmaceutical, ketamine possesses versatile biomedical applications including
procedural sedation and depression treatment, in addition to off-label uses such as asthma
treatment and pain management [9,11–13]. Various administration routes, including in-
travenous (IV), intramuscular, sublingual, oral, and intranasal (IN) have been reported
for ketamine [10,14]. Nowadays, IN drug delivery is becoming a potential alternative to
other drug administration routes because the nasal cavity is highly supplied with blood
vessels that facilitate the rapid absorption of drugs, leading to the enhanced bioavailability
of the drug in the site of action in a non-invasive method [15,16]. Thus, the IN route offers
a combination of rapid absorption, improved bioavailability, convenience, and the poten-
tial for both systemic and localized effects, making it a valuable option for drug delivery.
However, variations in the administration route of ketamine might need dose adjustments
to achieve the intended therapeutic effect [1,17,18]. For instance, the IN delivery of ke-
tamine is mainly affected by the drug’s solubility, stability, and the pH of the administered
dose [19]. Moreover, the nasal cavity has a limited volume capacity, where concentrated
doses in a small volume ranging between 0.2 and 0.3 mL per nostril are considered the ideal
volumes, whereas larger volumes would not be reliably absorbed due to mucosal surface
saturation and runoff from the nasal cavity [20–22]. Usually, ketamine doses ranging from
3 to 5 mg/kg are used for mild sedation, and thus, it is necessery to solubilize
200–300 mg/mL of ketamine HCl, which exceeds its solubility limit [23,24]. In addition, in
our ongoing interest to evaluate the sedative efficacy of an IN ketamine HCl formulation,
we are planning to compare it to the standard IV ketamine HCl administration in patients,
which requires a large quantity of ketamine HCl to be dissolved in a unit volume of medium
suitable for IN delivery, prompting the investigation presented in this work.

There are several approaches to improving drug solubility and its IN delivery, in-
cluding pH optimization as well as the incorporation of co-solvents or surfactants [25–27].
The choice of the solubilization approach could considerably affect the drug’s solubility,
stability, and bioavailability in the site of action [28], as well as prevent its precipitation,
degradation, and aggregation during storage [29,30]. The pH is a critical variable con-
trolling the solubility of ionizable drugs, and this is the case with ketamine HCl, which
is a weak base drug (pKa of 7.5) [31,32]. Various co-solvents can be used to improve a
drug’s solubility, including methanol, ethanol, propylene glycol (PG), dimethyl sulfoxide
(DMSO), dimethylformamide (DMF) and others. Pharmaceutical surfactants and solubiliz-
ing agents are abundant and range from molecular surfactants and polymeric surfactants
to polymers and various types of nanovehicles. In addition, ketamine HCl is preferred
for IN formulations due to its higher aqueous solubility, which is essential for its effective
delivery through the nasal route. Unlike the free base, ketamine HCl dissolves readily in
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water, especially at acidic pH levels, making it suitable for the limited volume available
for IN administration. It is also important to note that this salt form of ketamine is used in
FDA-approved intravenous injections currently available on the market. The literature is
abundant with reports detailing the enhancement of the solubility of various drugs using
these solubilizing approaches; however, there are no such studies available for ketamine
HCl. Furthermore, as ketamine HCl is a widely used therapeutic agent, it is crucial to
develop and validate analytical methods for its quantification in pharmaceutical dosage
forms. The literature reports methods such as high-performance liquid chromatography
(HPLC), mass spectrometry (MS), and gas chromatography (GC), all of which require
trained personnel, and significant time, cost, and effort. In contrast, Ultraviolet-Visible
(UV-Vis) spectrophotometry is a simple and rapid method that allows for the reliable
quantification of drugs [33–35]. In this regard, this study aims to investigate the following:

1. Explore the solubility profile of ketamine HCl for IN delivery by manipulating
different variables including pH, co-solvent addition, and incorporation of
different surfactants with the goal of achieving an effective concentration within a
small volume.

2. Develop a validated method for the ketamine HCl analysis using UV-Vis
spectrophotometry.

2. Material and Methods
2.1. Materials

Ketamine HCl was obtained from Supriya Lifescience Ltd., Mumbai, India. PG (CAS
No. 57-55-6), poloxamer (PLX) 407 (CAS No. 9003-11-6), sodium dodecyl sulfate (SDS,
CAS No. 151-21-3), DMSO (CAS No. 67-68-5), and polyethylene glycol (PEG) 400 (CAS
No. 25322-68-3) were purchased from Sigma-Aldrich, St. Louis, MO, USA. PLX 188
(CAS No. 9003-11-6) was purchased from Glentham Life Sciences, Corsham, Wiltshire,
UK. Polyvinylpyrrolidone (PVP, CAS No. 9003-39-8) was purchased from Thermo Fisher
Scientific, Waltham, MA, USA. Tween 80 (CAS No. 500-019-9), ethanol, lecithin soya (LS,
CAS No. 8030-76-0), and methanol were purchased from VWR, Radnor, PA, USA. Other
chemicals and co-solvents used were reagent grade and used as directed.

2.2. UV-Vis Method Validation

A new method for ketamine HCl analysis using UV-Vis spectrophotometry was
validated according to the International Conference on Harmonisation guidelines for the
validation of analytical procedures [36,37].

2.2.1. Linearity

Linearity was investigated using ketamine HCl solution in 0.1 M citrate buffer (CB),
pH = 3.5, in different concentrations levels (25, 50, 100, 200, 300, 400, and 500 µg/mL). The
absorbance of calibration standards was measured using Jenway 7205 UV/Vis 72 Series
Diode Array Scanning Spectrophotometer (Jenway, London, UK). UV–vis absorption
spectra were recorded using 10-mm quartz cuvettes (Hellma, Müllheim, Germany) of a 1 cm
optical path length. The spectrophotometric measurements were performed in triplicate in
the range of 200–400 nm. The absorbance was further converted into concentration using
the calibration curve of ketamine HCl. The linearity was evaluated using linear regression
analysis to evaluate the standard error of intercept, standard error of slope, and correlation
coefficient (R2).

2.2.2. Selectivity

Selectivity for ketamine HCl was investigated by assessing different blank samples,
including different solvents (CB pH 3.5, CB pH 5.5, and phosphate-buffered saline (PBS)
pH 7.5) and surfactants (1% SDS, 1% PLX 407, 1% PLX 188, and 1% PEG 400), for potential
interference with the quantification of ketamine HCl. In brief, a stock of ketamine HCl
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(200 µg/mL) was prepared in each condition, followed by analysis in the range 200–400 nm,
using a UV/Vis spectrophotometer as described in Section 2.2.1.

2.2.3. Precision

The precision of the method was evaluated using repeatability (intra-day) and inter-
mediate precision (inter-day) at three concentration levels (25, 100, and 250 µg/mL) of
ketamine HCl (n = 12). Repeatability was evaluated by evaluating different samples at
the same concentration and on the same day. The intermediate precision was evaluated
by comparing the same sample on different days (1 day, 2 days, and 1 week). Precision
was reported as relative standard deviation (RSD) % expressed as follows: (SD/mean)
× 100. Accuracy was reported as relative error (RE) % as follows: |(Measured Value −
True Value)/True Value| × 100. The limit of detection (LOD) was assessed as follows:
LOD = 3.3 × σ/S, where σ is the standard deviation of the y-intercept, and S is the slope
of the calibration curve. The limit of quantification (LOQ) was calculated as follows:
LOQ = 10 × σ/S.

2.2.4. Thermal Stability

The stability of the samples was assessed at three concentration levels (25, 100, and
250 µg/mL) of ketamine HCl on different days (1 day, 2 days, and 1 week). Samples were
stored at 2 different conditions (at 4 ◦C and 25 ◦C). At each point, the absorbance was
measured, and the concentration was calculated using the calibration curve equation. Data
were expressed as the mean ± standard deviation (SD) (n = 6).

2.3. Solubility of Ketamine HCl in Various Solvents

Different solvents (i.e., water, methanol, ethanol, PG, DMSO, and NMP) were used to
assess the solubility of ketamine HCl in each solvent. In brief, ketamine HCl was ground
and added to a glass vial (500 mg/mL). The contents of the vials were then mixed using
a vortex mixer to confirm the presence of any excess amount of ketamine HCl in each
vial. Further, vials were attached to a temperature-controlled benchtop orbital shaker for
shaking at 240 rpm at 25 ◦C for 14 h. After, the vial contents were centrifuged for 10 min
at 6000× g. The obtained supernatant was separated, and the absorbance of each sample
was measured in the range 200–400 nm, using a UV/Vis spectrophotometer as described in
Section 2.2.1.

2.4. Effect of pH on Ketamine HCl Solubility

The solubility of ketamine HCl was assessed in different pH mediums to explore
the optimal conditions for ketamine HCl solubilization. A total of 0.1 M of CB and PBS
were used as solvents. Ketamine HCl was ground and added in excess to a glass vial
(500 mg/mL) of various pH mediums including CB at pH 3.5 and 5.5, and PBS at pH 7.5
and 9.5. Further, vials were shaken at 240 rpm at 25 ◦C for 14 h. After, the vial content
was centrifuged for 10 min at 6000× g, the obtained supernatant was separated, and the
absorbance of each sample was analyzed using a UV/Vis spectrophotometer, as described
in Section 2.2.1.

2.5. Effect of Surfactants on Ketamine HCl Solubility

After establishing the optimal pH mediums for ketamine solubilization, the effect of
incorporating surfactants on ketamine HCl solubility was assessed. In brief, ketamine HCl
was added in excess (500 mg/mL) to various pH mediums including CB at pH 3.5 and 5.5,
containing different types of surfactants (e.g., SDS, PEG 400, PVP, Tween 80, LS, and PLX
188). The vial contents were shaken for 14 h at a speed of 240 rpm at 25 ◦C, followed by
sample analysis using a UV/Vis spectrophotometer, as described in Section 2.2.1.
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2.6. Statistical Analysis

The presented data are expressed as the average of the mean ± SD of three indepen-
dent replicates (n = 3). The statistical significance of the presented data were analyzed
using a one-way ANOVA and Dunnett’s test, as required, using GraphPad Prism 10 soft-
ware (ns: not significant; * p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001 indicate
statistical significance).

3. Results and Discussion
3.1. Method Development for Ketamine Analysis

The absorption spectra of ketamine HCl in aqueous solution is shown in Figure 2A.
The λmax was found to be 269 nm. Because the λmax was found to be similar in all evaluated
mediums (water, CB pH 3.5, CB pH 5.5, PBS pH 7.5, and PBS pH 9.5) and was not affected
by the pH of the dissolution medium, the same wavelength (269 nm) was used for all
further measurements of ketamine HCl concentration. A calibration curve was constructed
in the range of seven concentrations (25–500 µg/mL), as shown in Figure 2B. As illustrated
in Table 1, the regression equation was y = 0.0019x + 0.0403, with an R2 of 0.9995. The
LOD refers to the lowest concentration of an analyte that can be reliably detected but not
necessarily quantified, while LOQ refers to the lowest concentration of an analyte that
can be quantitatively measured with acceptable precision and accuracy, and they were
found to be 3.39 and 10.27 µg/mL, respectively. Table 2 illustrates the results obtained for
repeatability (intra-day) and intermediate precision (inter-day). In the case of the intra-day
analysis, the RSD% results ranged from 1.21% to 4.43%, while the RE% ranged from 2.07 to
2.64%. In the case of the inter-day analysis, the RSD% ranged from 0.52 to 4.32%, while the
RE% ranged from 0.56 to 1.08%.
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Table 1. Results of regression analysis of data for the quantitation of ketamine HCl.

Linear range (µg/mL) 25–500

Regression equation Y = 0.0019x + 0.0403

Standard error of slope 1.9 × 10−5

Standard error of intercept 1.96 × 10−3

R2 (mean ± SD) 0.9995 ± 0.0074

LOD (µg/mL) 3.39

LOQ (µg/mL) 10.27
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Table 2. Precision (%, RSD) and accuracy (%, RE) for propofol, ketamine HCl. Data are expressed as
mean ± SD (n = 12).

Added Concentration
(µg/mL)

Intra-Day (n = 12) Inter-Day (n = 12)

Concentration
Found

(Mean ± SD)

Precision
(RSD, %)

Accuracy
(RE, %)

Concentration
Found

(Mean ± SD)

Precision
(RSD, %)

Accuracy
(RE, %)

25 25.51 ± 1.13 4.43 2.07 25.16 ± 1.08 4.32 0.66
100 102.35 ± 2.36 2.31 2.35 100.56 ± 1.83 1.82 0.56
250 256.61 ± 3.12 1.21 2.64 252.71 ± 1.33 0.52 1.08

The stability profile of ketamine HCl was assessed under different storage conditions
to verify if any spontaneous degradation occurs after the samples are prepared. The results
were expressed as the mean ± SD. The obtained data illustrated that the sample solutions
were stable for up to 1 week when stored at 4 ◦C and 25 ◦C, with a degradation of less than
3% (Table 3). The stability of ketamine HCl when stored at 28 ◦C in a polypropylene syringe
for 48 hours was also reported to be retained for over 95% of its initial concentrations [38].
In addition, the pH measurements remained stable throughout the study, with no signs of
physical instability being observed, and thus, ketamine HCl appears to be a stable drug.
It is important to note that this method is not intended to serve as a stability-indicating
method for monitoring degradation products. Nonetheless, our initial stability testing
demonstrated that UV-Vis spectroscopy is adequate for analyzing ketamine HCl. For
future long-term stability evaluations, we plan to complement our UV-Vis method with an
HPLC-based approach to enhance sensitivity and reliability.

Table 3. Stability results of ketamine HCl at room temperature (25 ◦C) and in the refrigerator (4 ◦C).
Data are expressed as mean ± SD (n = 6).

Concentration (µg/mL)
(Mean ± SD)

25 100 250

Room
temperature

(25 ◦C)

Day 1 24.26 ± 3.71 100.64 ± 0.92 255.91 ± 0.30
Day 2 24.46 ± 1.48 99.77 ± 0.97 253.10 ± 5.26

1 week 25.82 ± 0.90 103.89 ± 0.28 250.12 ± 0.30

Refrigerator
(4 ◦C)

Day 1 24.15 ± 1.15 100.29 ± 0.79 255.38 ± 3.65
Day 2 25.12 ± 0.90 97.00 ± 1.26 254.42 ± 3.58

1 week 25.21 ± 1.33 100.82 ± 2.57 254.50 ± 3.30

Interference of the solvent or surfactants employed in the solubilization of drugs
could lead to inaccurate measurements of the drug’s concentration [39]. In this regard,
the interference in the different solvents (water, CB pH 3.5, CB pH 5.5, and PBS pH 7.5)
that could be employed during the solubilization of ketamine HCl for IN delivery were
evaluated. Interference was assessed by considering whether significant differences were
observed at λmax (269 nm). As shown in Figure 3A, no peak was observed in any of the
ketamine HCl-free solvents around 269 nm, while the results demonstrate well-defined
peaks at the absorbance wavelength of 269 nm in the presence of ketamine HCl (Figure 3B).
Moreover, surfactants typically absorb in the ultraviolet region of the spectrum, and thus,
could alter the drug quantification using UV-Vis spectrophotometry [40,41]. Therfore, the
interference of four surfactants (1% SDS, 1%PLX 407, 1%PLX 188, and 1%PEG 400) was also
assessed, and clearly, no interference in the absence of ketamine HCl at λmax (269 nm) was
observed (Figure 3C) in comparison to the well-defined peaks at the absorbance wavelength
269 nm, in the presence of ketamine HCl (Figure 3D). The absence of interference stems from
the presence of an aromatic moiety in keamine that is absent in all evaluated surfactants in
this study, resulting in a defined peak for examination at 269 nm. Similarly, Rapalli et al.
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also reported that no interference between the employed surfactants and buffers of the
release media in the quantification of curcumin was observed [42].
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Figure 3. UV–Vis absorption spectrum of ketamine HCl (200 µg/mL) in different solvents without
(A) and with ketamine HCl (B), and in solutions of various surfactants without (C) and with ketamine
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3.2. Effect of Different Solvents on Ketamine HCl Solubility

Organic co-solvents were reported to play an important role in the solubilization of IN
drugs. For instance, Nayzilam®, an example of a midazolam nasal spray that was developed
by Proximagen, Ltd. (London, UK) and approved by the Food and Drug Administration
(FDA) in 2019, was solubilized using different organic co-solvents, including ethanol and
PG [19,43]. ValtocoTM is another formulation of IN diazepam reaching the market in 2020
that was solubilized by adding high amounts of organic cosolvents [43].

To identify the possible co-solvent that could be added to water to enhance the solu-
bility of ketamine HCl, we first conducted a study to evaluate the solubility of ketamine
HCl in various commonly used organic solvents (methanol, ethanol, PG, DMSO, and NMP)
using UV–vis absorption spectrometry with independent calibration curves using the
tested solvents. Figure 4 illustrates clearly that the solubility of ketamine was the highest in
methanol (269.9 ± 25.4 mg/mL), followed by water (158.5 ± 10.2 mg/mL). The solubility of
ketamine in methanol could be explained by many factors, including ketamine’s tendency
to form hydrogen bonds with methanol utilizing its ketone functional group (-C=O) and
an amine functional group (-NH2). Both functional groups could potentially be involved
in hydrogen bonding with methanol [44–46]. However, the solubility of ketamine HCl in
ethanol was more than ten times lower than in methanol, despite ethanol’s similar ability
to form hydrogen bonds with ketamine HCl. Figure 4 clearly indicates that the solubility of
ketamine HCl in organic solvents is related to solvent polarity. Methanol, with a relative
polarity to water of 0.762, exhibits superior solubilization compared to ethanol, which has a
relative polarity value of 0.654. It is worth mentioning that methanol was the only organic
solvent that exhibited a better solubilization capability compared to water. Unfortunately,
the use of methanol as a co-solvent for IN delivery is uncommon and might induce acute
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toxicity and irritation, and thus, it served only as an experimental tool in the early stages
and was excluded from further consideration. Collectively, no common solvent was found
to be suitable for significantly boosting the solubility of ketamine HCl in water. Therefore,
a completely aqueous system was considered for further investigations.
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3.3. Effect of pH on Ketamine HCl Solubility

The solution pH could induce a significant impact on the drug solubility profile,
which in turn affects its absorption, biodistribution, and bioavailability in the site of ac-
tion [47,48]. The nasal mucosa’s pH is in the range of 5.5 to 6.5 [49]. However, nasal
formulation pH could exhibit a wider range (3.5–7.5) to consider other factors such as
solubilization and stability of therapeutics. In this regard, a wide pH range at 3.5, 5.5,
7.5, and 9.5 was investigated, which is a standard approach in solubility evaluations. To
further ensure that the choice of buffer type does not induce any alterations in ketamine
solubility, two different buffer systems, including CB and PBS, were tested. This approach
was implemented to confirm that the buffers would not interfere with the solubility of
ketamine under experimental conditions. Overall, the buffer type did not significantly
affect ketamine’s solubility (Figure 5), and a similar solubility profile was obtained in
both CB and PBS across all tested pH values. The findings in Figure 5 also illustrate
that pH is the primary influencing factor, where the highest solubilization profile of ke-
tamine HCl was observed in acidic environments at pH 3.5 (222.8 ± 5.3 mg/mL at CB and
218.6 ± 5.2 mg/mL at PBS) and this is consistent with ketamine being a basic drug, fol-
lowed by pH 5.5 (191.9 ± 13.3 mg/mL at CB and 179.4 ± 13.5 mg/mL at PBS). In contrast,
ketamine HCl was poorly soluble in basic environments at pH 7.5 (76.7 ± 13.5 mg/mL
at CB and 69.0 ± 5.0 mg/mL at PBS) and at pH 9.5 (69.8 ± 10.1 mg/mL at CB and
67.1 ± 5.2 mg/mL at PBS). This could be explained by the fact that ketamine is a weak base,
and it possesses a pKa of 7.5, and thus, the protonation of amine (ionization) is promoted
at a more acidic pH. However, when pH = pKa, ketamine HCl tends to become 50% proto-
nated and 50% deprotonated, and thus, its solubility decreases, which has been observed
at pH 7.5 (Figure 5). While at pH > pKa, the drug will become more deprotonated, and
thus, its solubility decreases in the media. In this context, changes in the ionization state
of drugs could significantly alter its solubility and PK profiles in different physiological
environments. These findings are consistent with the fact that the pH of commercially
available ketamine solutions for intravenous injections is maintained at an acidic level
(around pH 3.5–5.5) to ensure the maximum stability and solubility of the drug. A system-
atic evaluation of the effects of buffer composition (type and ionic strength) on solubility
was not conducted in this study, but this could be the focus of future studies.
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3.4. Effect of Surfactants on Ketamine HCl Solubility

Surfactants play an important role in solubilizing the poorly soluble drugs, improving
their dissolution profile and drug delivery, as well as enhancing their stability profile [26].
The idea behind employing surfactant strategy for improving the solubility of drugs
emerged from a reported patent involving the incorporation of surfactants with ketamine
in order to reduce the interfacial tension, and thus to reduce the tendency of ketamine
HCl to precipitate [50]. To explore their impact on the solubility profile of ketamine HCl,
different commonly used pharmaceutical surfactants were investigated under acidic pH
environments including SDS, PEG 400, PVP, Tween 80, poloxamer 188, and lecithin Soya
(Figure 6). Among the tested surfactants, 1% SDS was the potential surfactant for ketamine
HCl solubilization (Figure 7). Under CB at pH 3.5 environment, the solubility of ketamine
HCl improved from 222.8 ± 5.3 mg/mL to 256.1 ± 15.4 mg/mL (16% enhancement) in
the presence of 1% SDS (Figure 7). Similarly, SDS was previously reported to significantly
improve the solubility of various drugs [51,52]. Surprisingly, the solubility of ketamine
HCl decreased with the incorporation of 1% PEG 400 and further decreased with 10%
PEG 400, as shown in Figure 7. This can be explained by the salting-out effect, where
PEG, a hydrophilic polymer, undergoes high solvation in water, reducing water’s capacity
to dissolve other molecules, including ketamine HCl. A similar pattern was observed
with PVP as a surfactant; the solubility of ketamine HCl decreased more with 20% PVP
compared to 10% PVP. This behavior for both PEG and PVP is due to their high solvation
in water, leading to the reduced solvation of ketamine HCl. Conversely, the addition of 10%
Tween 80 slightly enhanced the solubility of ketamine HCl by approximately 5%, and the
addition of 20% Tween 80 enhanced the solubility by around 9%. Unlike PEG 400 and PVP,
Tween 80 can form micelles above its critical micelle concentration. This results in a lower
salting-out effect and provides a greater solubilization capacity within the hydrophobic
compartments of the formed micelles. LS and PLX 188 are two micelle-forming surfactants,
and they slightly improved the solubility of ketamine to a lower degree compared to Tween
or SDS. Collectively, our results indicate that SDS at 1% w/v is the optimal surfactant for
improving the solubility of ketamine HCl, despite only providing marginal enhancement
in solubilization.
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4. Conclusions

This study explored the solubility profile of ketamine HCl for intranasal delivery
by manipulating variables such as co-solvent effects, surfactant incorporation, and pH
adjustments. The findings revealed a marked improvement in ketamine HCl solubility, par-
ticularly through pH optimization and the addition of surfactants like SDS. A preliminary
one-week stability assessment showed consistent solubility and pH stability, supporting the
preparation of highly concentrated ketamine HCl solutions suitable for IN delivery, which
is critical given the limited dose volume per nostril and the high therapeutic doses required.

These outcomes highlight the potential of these solubilization strategies to address
the solubility limitations of ketamine HCl, enabling the preparation of highly concen-
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trated ketamine HCl formulations for intranasal delivery, which could improve both the
accessibility and efficacy of ketamine-based therapies. Future studies should focus on
longer-term stability testing to establish self-life and formulation robustness under various
storage conditions. Additionally, applying these approaches to other active pharmaceutical
ingredients may broaden intranasal delivery applications, enhancing bioavailability and
therapeutic efficacy in clinical settings.
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