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A B S T R A C T   

Without Borel or Padé techniques, we show that for a divergent series with n! large-order growth factor, the set 
of hypergeometric series Fp p 2 represents suitable approximants. The divergent Fp p 2 series are then resummed 
via their representation in terms of the Meijer-G function. The choice of Fp p 2 accelerates the convergence even 
with only weak-coupling information as input. For more acceleration of the convergence, we employ the strong- 
coupling and large-order information. We obtained a new constraint that relates the difference between the sum 
of the numerator and the sum of denominator parameters in the hypergeometric approximant to one of the large- 
order parameters. To test the validity of that constraint, we employed it to obtain the exact partition function of 
the zero-dimensional 4 scalar field theory. The algorithm is also applied for the resummation of the ground state 
energies of +0 1

4 and +i 0 1
3 scalar field theories. We get accurate results for the whole coupling space and the 

precision is improved systematically in using higher orders. Precise results for the critical exponents of the 
O (4)-symmetric field model in three dimensions have been obtained from resummation of the recent six-loops 
order of the corresponding perturbation series. The recent seven-loops order for the -function of the +3 1

4 field 
theory has been resummed which shows non-existence of fixed points. The first resummation result of the seven- 
loop series representing the fractal dimension of the two-dimensional self-avoiding polymer is presented here 
where we get a very accurate value of =d 1.3307f compared to its exact value (4/3 1.3333).   

1. Introduction 

In many situations in quantum field theory, perturbative calcula-
tions are producing divergent series with zero radius of convergence  
[1–6]. Being divergent, one can face a situation for which the predic-
tions are not accurate even for small values of the argument. The point 
is that divergent series are possessing factorial growth factors and thus 
the ignored terms might contribute more than the ones taken into ac-
count. To get reliable results from divergent series, resummation 
techniques are introduced. The most famous one is Borel [3,1] re-
summation technique and its extension Borel-Padé [4]. Recently, a 
hypergeometric resummation technique has been introduced and ap-
plied to various examples [7–13]. Although it gives accurate predic-
tions from resumming divergent series, the algorithm has some lim-
itations [8,14]. As reported in Refs. [8,14], one might not be able to get 
aimed precision for small coupling values because of the use of hy-
pergeometric function of finite radius of convergence ( F2 1) to resum a 
divergent series with zero radius of convergence. This issue has been 
solved (by the same authors) for F2 1 resummation in Ref. [8] by brute- 
force disposition of the branch-cut (make it running from 0 to ). 
Another resummation algorithm (Borel-hypergeometric) has been 

employed in Ref. [7] too which has been extended to the Meijer-G 
approximant algorithm in Ref. [14]. In fact, the algorithm in Ref. [14] is 
shown to have precise predictions from relatively low orders of per-
turbation series. In Ref. [15], a closely related algorithm has been used 
where the authors match a series by a linear combination of asymptotic 
series of confluent hypergeometric functions. These algorithms can 
overcome the problem of precision at small coupling values. For in-
stance, the series expansion of the used Meijer-G functions [14,16,17] 
has zero-radius of convergence while for the work in [15] they are 
matching a series with confluent hypergeometric functions which are in 
turn is equivalent to a series with zero radius of convergence. 

The hypergeometric-Borel algorithm in Ref.[14] used Padé as well 
as Borel techniques to accomplish final approximants in terms of the 
Meijer-G function. To apply Borel transformation to a divergent series, 
one needs to know the large-order growth factor (n! for instance) of the 
given perturbation series. As long as the large-order behavior is indis-
pensable for the application of Borel transformation, one might wonder 
if the Borel transformation is really needed to achieve the Meijer-G 
function approximants. Besides, it is traditionally known that the in-
corporation of parameters from asymptotic behaviors (strong-coupling 
and large-order) of the perturbation series accelerates the convergence 
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of resummation algorithms [4] and one might in a need to suggest a 
way to incorporate them in the Meijer-G function parametrization. In 
this work we aim to introduce a resummation algorithm that in-
corporates information from asymptotic behaviors without using Borel 
or padé techniques. The suggested algorithm has the same level of 
simplicity as the first algorithm in Ref. [7] (hypergeometric resumma-
tion one) but on the other hand can give precise results for the whole 
coupling space. By simple we mean no usage of Borel or Padé techni-
ques but rather using hypergeometric functions that have zero-radius of 
convergence to approximate the given series and then resum them 
using a representation in terms of Mellin-Barnes integrals. The sug-
gested algorithm will not only stress simplicity but also can guarantee 
faster convergence as it will be able to accommodate available in-
formation from asymptotic large-order and strong coupling data for the 
first time in such type of algorithms. 

The key point to achieve our goal is to approximate the given di-
vergent series by the set of hypergeometric functions Fp q which have 
zero-radius of convergence ( +p q 2) [18]. Note that Fp p 1 approx-
imants with finite radius of convergence are still suitable in resumming 
divergent series of finite radius of convergence like the strong coupling 
expansion series of the Yang-Lee model in Ref. [2]. However, when the 
series under consideration has a zero radius of convergence, it would be 
more suitable to use the Fp q series with +p q 2 to approximate the 
divergent series under investigation. For +p q 2, the series expan-
sion of Fp q is divergent but it can be analytically continued via use of 
the Meijer-G function [18] where we have the representation: 
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The Meijer-G function, on the other hand, has the integral representa-
tion of the form [18]: 
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A suitable choice of the contour C enables one to get an analytic con-
tinuation for … …F a a b b z( , ; . ; )p q p q1 1 . For instance when C is taken from 

i to + i [18], the integral above converges for + < +p q m n2( ). 
For reasons that will be clearer later, we are interested in the functions 

… …F a a b b z( , ; . ; )p p p p2 1 1 2 in our work. So in using Eq. (2), we have and 
thus we have + =p q p2 2 which is smaller than + = +m n p2( ) 2 2. 
So the resummation of the series of … …F a a b b z( , ; . ; )p p p p2 1 1 2 is possible. 
Although here no Borel transform is used, the Mellin-Barnes transform 
defining the G-function might suffer from Stokes phenomena [19] 
which is then equivalent to Non-Borel summability. There exits algo-
rithms in literature [19] to smooth them out but it is out of the scope of 
this work. Instead when facing such problems, we will apply the hy-
pergeometric-Meijer resummation algorithm (introduced in this work) 
to resum the resurgent transseries [14,19–23] associated with that 
problem. The example of the resummation of the non-Borel summable 
series representing the zero-dimensional partition function of the de-
generate-vcua 4 scalar field theory will be given. 

The structure of this paper will be as follows. In Section 2, we stress 
the strong-coupling and the large-order asymptotic behaviors of the 
expansion of the hypergeometric function … …F a a b b z( , ; . ; )p p p p2 1 1 2 . In 
Section 3, the hypergeometric-Meijer resummation algorithm is pre-
sented. Resummation of the divergent series of the zero-dimensional 
partition function of the single-vacuum (Borel-summable) and the 
double vacua (non-Borel summable) 4 theory is presented in Section 4. 
In Section 5 and Section 6, we apply the resummation algorithm to the 
series of vacuum energies of the +0 1

4 and the PT -symmetric +i 0 1
3 field 

theories. The resummation results for the recent six-loops order of the 
renormalization group functions of the O (4)-symmetric quantum field 
model in three dimensions is introduced in Section 7 while the appli-
cation of the algorithm to resum the recent seven-loops order of the 

-function of the +3 1
4 theory is included in Section 8. In Section 9, we 

present the first resummation result of the seven-loop ( -expansion) for 
the fractal dimension of the self-avoiding polymer. Summary and con-
clusions will follow in Section 10. 

2. Large-order and strong-coupling asymptotic behaviors of the 
hypergeometric Fp p 2

We mentioned above that toward the resummation of a divergent 
series with zero radius of convergence, the functions 

… …F a a b b z( , ; . ; )p p p q2 1 1 are suitable when the weak-coupling informa-
tion are available up to some order. It is well known that employing 
strong-coupling as well as large-order data can accelerate the con-
vergence of a resummation technique [4]. Now we need to show that 
the set of … …F a a b b z( , ; . ; )p p p p2 1 1 2 functions are able to incorporate 
both strong-coupling as well as the large-order data of the perturbation 
series to be resummed. To do that, consider the divergent series of the 
expansion of a physical quantity Q g( ) such that: 
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In fact, for divergent series of the renormalization group functions in 
quantum field theory (for instance), the large-order asymptotic beha-
vior of the perturbation series takes the form: [4] 
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For the resummation of a divergent series that has such kind of large 
order behavior, we suggest the use of a hypergeometric function Fp q
with a constraint on the relation between the number p of numerator 
parameters and the number q of denominator parameters such that it 
can reproduce the above large order behavior. To elucidate that point, 
consider the series expansion of the hypergeometric function Fp q of the 
form: 
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where 
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For large n, the asymptotic form of a ratio of two functions is given by  
[29]: 
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For the lowest order approximant ( F a a x( , ; )2 0 1 2 we have 
= =p q2, 0 and thus there are two -functions in the numerator and 

one -function in the denominator (coming from = +n n! ( 1)). For 
that case and for n we have: 
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which resembles the large-order behavior of the given perturbation 
series in Eq. (4). To show that such large order behavior persists for any 
higher order approximant, we consider the function 

… …F a a b b x( , , ; , , ; )p p p p2 1 1 2 which has p number of numerator 
-functions and p 1 of denominator -functions. Accordingly, the 

asymptotic behavior for large n takes the form: 
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Thus the large-order behavior in Eq. (4) can be reproduced from this 
form. To obtain the above large-order behavior, we used hypergeo-
metric approximants for which = +p q 2. In fact, any other relation 
between p and q can not account for the n! growth factor in the large- 
order behavior of the given divergent series. Knowing this, the large- 
order information in Eq. (4) thus sets the constraint: 
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on the numerator parameters (ai) and the denominator parameters () of 
the hypergeometric approximant …… ……F a a b b g( , ; , .. ; )p p p p2 1 1 2 . In 
view of the above analysis, we conclude that out of the hypergeometric 
functions …… ……F a a b b g( , ; , .. ; )p q p q1 1 , the suitable candidate to re-
present the perturbation series in Eq. (3) with the large order behavior 
in Eq. (4) is the function …… ……F a a b b g( , ; , .. ; )p p p p2 1 1 2 . 

The strong coupling expansion of a physical quantity can also be 
obtained (for quantum field theory, it can only be obtained for some 
cases) using methods in Refs. [24,25]. The ai parameters in the function 

…… ……F a a b b g( , ; , .. ; )p p p p2 1 1 2 are totally determined from powers in 
the strong coupling expansion. For non-integer a ai j, the hypergeo-
metric function has the strong coupling expansion in the form [26]: 
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From this expansion one concludes that the numerator parameters ai
can be obtained from the strong coupling asymptotic behavior of the 
perturbation series. So one can get the whole set of parameters in 

…… ……F a a b b g( , ; , .. ; )p p p p2 1 1 2 from the available orders of the per-
turbation series (weak-coupling), large-order and strong-coupling in-
formation. 

Sometimes one can find cases for which the differences between nu-
merator parameters (a ai j) are integers and thus one might conclude that 
the strong-coupling asymptotic behavior of the given series can not be 
reproduced by any parametrization of the hypergeometric approximants. 
However, if the strong-coupling expansion of the approximant is alter-
nating in sign, one can still extract the values of the parameters 

……a a,1 2 and ap from the powers in the strong coupling expansion of the 
given series. We shall stress this point in Section 5 when studying the re-
summation of the ground state energy of the 4 theory in +0 1 dimensions. 

3. The hypergeometric-Meijer resummation algorithm 

For a divergent series that has a large-order n! growth factor, the 
hypergeometric-Meijer resummation algorithm follows the following 
steps:   

1. Matching the given perturbation series with the 
series expansion of the hypergeometric approximant 

…… ……F a a b b g( ), ; , .. ;p p p p2 1 2 :   

(a) Weak-coupling information as input: In case we have only 
week coupling information, all the parameters in 

…… ……F a a b b g( , ; , .. ; )p p p p2 1 2 are obtained by matching the 
expansion of Fp p 2 with the available perturbative terms in the 
perturbation series in Eq. (3). Since there is an odd number 
( p2 1) of unknown parameters, so one needs an odd number of 
terms from the given perturbation series. For the even number 
resummation, however, one can resum the once subtracted series 
Q g g( ( ) )/ instead of the original one [33]. As an example for 

the resummation of a series up to an odd order is the third order 
approximant F a a g( , ;; )2 0 1 2 where the matching will lead to the 
result: 
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Solving these equations, the three parameters a a,1 2 and are fully 
determined. Also, the fifth order hypergeometric approximant is 
F a a a b g( , , ; ; )3 1 1 2 3 1 while in using weak-coupling information 

up O g( )M , one uses the approximant 
…… ……F a a b b g( , ; , .. ; )p p p p2 1 2 which has =M p2 1 unknown 

parameters.   
(b) Weak-coupling and Large-order information as input: If 
the available information about the given series include weak- 
coupling as well as large order information (but not strong-cou-
pling), one can accelerate the convergence of the algorithm by 
using the large-order information. To illustrate this, consider for 
simplicity the approximant F a a a b g( , , ; ; )3 1 1 2 3 1 which needs 
three orders from the perturbation series represented by the 
coefficients ,1 2 and 3 above. In this case, we have only four 
unknowns (a a a b, , , )1 2 3 1 but the needed fourth equation can be 
offered by the constraint: 

=
= =

a b b2 .
i

p

i
i

p

i
1 1

2

(13) 

Accordingly, the large-order information lowers the previously 
fifth order parametrization of F a a a b g( , , ; ; )3 1 1 2 3 1 to a third order 
one. A note to be mentioned on using low-order approximants is 
that, except for rare cases, one usually can not extract good ap-
proximations from just first order of perturbation series as input 
and of course good approximations are always expected for 
second, third and higher orders. In general, in employing the 
large-order information, the number of unknowns is reduced by 
two and thus one can use the approximant 

…… ……+ +F a a b b g( , ; , .. ; )p p p p1 1 1 1 1 to represent the up to 
O g( )p(2 2) order of perturbation series. 
(c) Weak-coupling, strong-coupling and Large-order in-
formation as input: In case we know the strong-coupling in-
formation, then the approximant …… ……F a a b b g( , ; , .. ; )p p p p2 1 2
includes only p 2 unknowns since all numerator parameters 
( ……a a, )p1 are known from strong-coupling behavior while the 
parameter is known from the large order behavior. In this case, 
one needs only p( 3) orders from perturbation series because of 
the constraint in Eq. (10). However, for the lowest order ap-
proximant F a a g( , ;; )2 0 1 2 there will be redundancy as one can 
get all the parameters without using the condition in Eq. (10). In 
that case the lowest order approximant could be 
F a a a b g( , , ; ; )3 1 1 2 3 1 where in this case the given information can 

mach the number of unknown parameters. But for low order ap-
proximants like this one, it is not recommended to employ the 
condition in Eq. (10) as the large-order matching between the 
given series and the used approximant is correct up to O ( )n

1 which 
means that it will be more accurate for relatively high orders. 
In case the approximant is exact, the constraint in Eq. (10) is 
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satisfied automatically even for the lowest order approximant as 
we will see in the zero-dimensional partition function example to 
be studied in this work. 

2. Hypergeometric to Meijer-G approximants: We use the re-
presentation of the hypergeometric function 

…… ……F a a b b g( , ; , .. ; )p p p p2 1 2 in terms of the Meijer-G function in 
Eq. (1) to get a convergent result out of the divergent series for  

Fp p 2. For instance, the hypergeometric approximant F3 1 is re-
presented as: 

=
…
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F a a a b z b
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G
a a

b z, , ; ; ( )
( )
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3.1. Successive approximants of the algorithm 

3.1.1. Weak-coupling parametrization 
In case we have only weak-coupling information from the pertur-

bation series as: 

= +
=

Q g g O g( ) ( ).
n
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n
n p

0

2 2
2 1

(15)   

1. Odd orders: The successive odd orders approximants can be 
parametrized as follows:   

i) The third order approximant is taken as 
F a a g( ( , ;; ))0 2 0 1 2 where the parameters a a, ,1 2 are obtained 

from the weak-coupling information as shown in Eq. (12).   
ii) The fifth order approximant is represented by 

F a a b g( ( , ; ; ))0 3 1 1 2 1 and the five parameters are obtained all from 
the weak-coupling information. 
iii) The generalized odd ( p2 1) order is represented by the ap-
proximant …… ……F a a b b g( ( , ; , .. ; ))p p p p0 2 1 1 2 .   

2. Even orders: In case we have even terms from the perturbation 
series, we resum the subtracted series: 

=Q g
Q g

g
( )

( )
,1

0

(16) 

where in this case the fourth order approximant for Q g( )1 is re-
presented by F a a g( ( , ;; ))1 2 0 1 2 while the p2 order is represented 
by the approximant …… ……F a a b b g( ( , ; , .. ; ))p p p p1 2 1 1 2 . 

3.1.2. Weak-coupling and large order parametrization 
In this case the even order approximants are represented by:   

1) The second order is represented by F a a g( ( , ;; ))0 2 0 1 2 ( is 
known from large-order asymptotic behavior.   
2) The fourth order approximant is represented by 

F a a a b g( ( , , ; ; ))0 3 1 1 2 3 1
3) the p2 2 order approximant is represented by 

…… ……pF a a b b g( ( , ; , .. ; ))p p p0 2 1 1 2

For odd orders, however, we employ the constraint in Eq. (10) to 
obtain an even number of equations to solve for the p2 2 unknown 
parameters. 

3.1.3. Strong-coupling, weak-coupling and large order parametrization 
In this case, the numerator parameters as well as the large-order 

parameter are all known. Accordingly, the successive approximants 
are generated as follows:   

1) The first order approximant is represented by 
F a a a b g( ( , , ; ; ))0 3 1 1 2 3 1 (b1 is the only unknown parameter and we 

use only the first two orders ( + g0 1 ) from the perturbation series 
as input). Note that for low orders, we do not employ the constraint 
in Eq. (10) for the reasons mentioned above.   
2) The second order approximant is represented by 

F a a a a b b g( ( , , , ; , ; ))0 4 2 1 2 3 4 1 2
3) The p 2 even order approximant is represented by 

…… ……F a a b b g( ( , ; , .. ; ))p p p p0 2 1 1 2
4) In case p 2 is an odd number but relatively high, the approx-
imant is also …… ……F a a b b g( ( , ; , .. ; ))p p p p0 2 1 1 2 but in this case 
we use the constraint in Eq. (10). 

4. Hypergeometric-Meijer resummation of the zero-dimensional 
partition function of the 4 scalar field theory 

In this section, we give two examples for resummation of the par-
tition function of 4 theory in zero dimension. In both cases, the par-
tition function has a divergent series expansion with n! growth factor. 
The first case is the single vacuum theory where the series is Borel 
summable and no complex ambiguity exists. The second example is the 
partition function of a double-vacua 4 theory where the series is non- 
Borel summable and thus one resorts to the resummation of the re-
surgent transseries. 

4.1. Single-vacuum 4 scalar field theory 

An example of a divergent series with zero radius of convergence 
that is always used to test the success of a resummation algorithm is the 
partition function of zero-dimensional 4 theory. Let us apply the al-
gorithm here to resum the associated divergent perturbation series. We 
shall apply the algorithm three times for the same problem, one using 
weak-coupling information only, another by adding the large-order 
information and finally by adding strong-coupling information. The 
reason behind using that recipe is to test the validity of the new con-
straint set on the parameters in Eq. (10) using an exact resummation 
result. To do that, consider the partition function of that model given 
by: 

=Z d g1
2

exp
2 4!

,
2

4
(17) 

with the associated weak-coupling perturbation series is of the form: 

= + + +Z g g g g g g O g( ) 1
8
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In fact, the lowest order hypergeometric approximant is 
F a a g( , ;; )2 0 1 2 with only three unknown parameters. To determine 

the parameters a a,1 2 and we use Eq. (12) with the corresponding i
coefficients: 

=
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The solution of these equations are given by: = =a a,1
1
4 2

3
4 and = 2

3 . 
Accordingly, the hypergeometric-Meijer approximant of Z g( )is 

=
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In using the identity (see Eq. (9) in Section 5.3.1 and Eq. (7) in 
Section 5.6 of Ref. [18]) 
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we get the exact result reported in Ref. [14] but it has been obtained 
there at the fifth order while we obtained it from knowing only the first 
three terms of the week coupling expansion. Note that the fifth order 
approximant F a a a b g( , , ; ; )3 1 1 2 3 1 is parametrized as: 

= =Z g F a a g F g( ) 1
4

, 3
4

, ; ; 2
3

1
4

, 3
4

;; 2
3

.3 1 2 0 (22)  

Like wise the seventh order approximant reduces to the lowest order 
one which reflects the convergence of the algorithm. 

One can even accelerate the convergence to the exact result by using 
the large-order information. The large-order behavior for the series 
Z g( ) can also be obtained as ( )n n g!

n1 2
3 +( )( )O1 n

1 for n . 

Accordingly, we have = 2
3 . For the parameters a1 and a2 , we use one 

equation from matching the weak-coupling expansion with expansion 
of F a a g( , ;; )2 0 1 2 to get: 

=a a2
3

1
8

,1 2 (23) 

while the other equation from matching the large-order behavior in Eq.  
(10): 

+ =a a 2 1.1 2 (24) 

Solving these equations one gets: =a1
3
4 and =a2

1
4 . So in using the 

large-order data, the exact result has been obtained from first order in 
perturbation series. This result assures the validity of the new constraint 
obtained in this work (Eq. (10)). Also, higher order approximants re-
duces to the lowest order approximant F a a g( , ;; )2 0 1 2 . 

One can also make the convergence even faster in case we know also 
the strong-coupling information. The strong coupling expansion of the 
integral in Eq. (17) can be obtained as: 

= + ( )( )
( )

Z g g g O g( ) 3
2

.
24
16

3
4

1
4

3
4

3

3
4

5
4

4
4

(25) 

When a a1 2 is not an integer, the asymptotic behavior of 
F a a g( , ;; )2 0 1 2 for large g values takes the form: 

+F a a g c g c g( , ;; ) .a a
2 0 1 2 1 21 2 (26) 

Accordingly, we get =a1
3
4 and =a2

1
4 . In other words we know from 

large-order data and a1and a2 from strong-coupling data. Thus the exact 
partition function has been obtained from the knowledge of the large- 
order and strong-coupling information only (no week-coupling data 
needed). The higher orders approximants like 
F a a a a b b g( , , , ; , ; )4 2 1 2 3 4 1 2 do involve weak-coupling, strong-coupling 

as well as large order information but they again reduce to the lowest 
order approximant or equivalently: 

=

=

( ) ( )
( )

F g F g

F g

, ;; , , ; ;

, , , ; , ;

2 0
1
4

3
4

2
3 3 1

1
4

3
4

5
4

5
4

2
3

4 2
1
4

3
4

5
4

7
4

5
4

7
4

2
3 (27)  

4.2. Double-vacua 4 theory 

In some cases, the perturbation series is not Borel-summable and the 
Borel-summation of the series leads to complex ambiguities [20]. An 
example of such kind of perturbation series is the one associated with 
the integral representing the zero-dimensional partition function of the 
degenerate-vacua 4 theory [14,19,21]: 

=Z d g1
2

exp
2

(1 ) ,
2

2 2
(28) 

where it has an expansion of the from: 

+ + + +Z g g g g O g( ) 1 6 210 13860 ( ).2 3 4 (29) 

It is clear that this series is not Borel-summable and the Borel sum will 
result in a complex ambiguity. The reason behind that is the existence 
of singular points on the contour used in the Borel transform which 
results in the existence of Stokes phenomena. A similar situation can 
exist for the Meijer-G resummation since the Meijer-G function is de-
fined through a Mellin-Barnes integrals where Stokes phenomena can 
exist too [21]. In such case a resurgent transseries can be obtained that 
can account for non-perturbative contributions for small coupling va-
lues associated with the expansion around the non-perturbative saddle 
point [20,19,21]. The transseries for the zero-dimensional partition 
function of the degenerate-vacua 4 theory has been reported in Ref.  
[14] as: 

= ± + + +

+ + + +

Z g

i
g

g g g O g

g g g O g

( )

2 exp 1
32

(1 6 210 13860 ( )) 2

(1 6 210 13860 ( )),

2 3 4

2 3 4 (30) 

where the + sign for >Im g( ) 0 and − sign for <Im g( ) 0. This 
transseries has in fact incorporated the contributions from the Gaussian 
saddle point and the instanton saddle point [22]. The two separate 
series in the transseries above can be resummed using the hypergeo-
metric-Meijer resummation followed in this work and the exact result is 
obtained at the third order where we have: 

=

+ ±

=

=

Z g G a a g

G a a g

( ) 1 , 1
0 32

1 , 1
0 32 ,

a

i e

a

2

( )
2,1
1,2 1 2

2

( )
2,1
1,2 1 2

k k

g

k k

1
2

1
32 /

1
2

(31) 

with =a1
1
4 and =a2

3
4 . Note that this result is real and exact. In Ref.  

[31], the exact result is listed as (for >Re g( ) 0): 

=
( )

Z g
e D

g
( )

2
,

g
g

/ 1
4

1
64 1

2

4 (32) 

where D z( ) is the parabolic cylinder function which is equivalent to 
the result we obtained. 

5. Resummation of the vacuum energy perturbation series of the 
+0 1

4 Scalar field theory 

As another testing example, we apply the algorithm to resum the 
ground-state energy of the anharmonic oscillator where it is equivalent 
to the scalar 4 theory in +0 1 space-time dimensions. We shall resum 
the same series using two different parametrizations. The first para-
metrization is using weak-coupling, large-order and strong-coupling 
data. In the second parametrization, we use weak-coupling and large- 
order data while the strong-coupling parameters are extracted from the 
approximant. Up to the best of our knowledge, a closed form strong- 
coupling asymptotic behavior has not been obtained yet even for simple 
quantum field theories like the 4-scalar field theory in space-time di-
mensions higher than +0 1. Accordingly, the second parametrization is 
very important in obtaining the asymptotic strong-coupling behavior in 
quantum field theories where other resummation algorithms can give 
different results for the same problem [37–40]. 

5.1. Weak-coupling, large-order and strong-coupling parametrization of 
resummation approximants for +0 1

4 vacuum energy 

The Hamiltonian density for this example is given by: 

= + +H m g
2 2 4

.
2

2 4
(33) 
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In +0 1 space-time dimensions and for =m 1, the perturbation series of 
the ground state energy has the form [27]: 

= + + + +E g g g g g O g1
2

3
4

21
8

333
16

30885
128

916731
256

( ).0
2 3 4 5 6

(34) 

The large order behavior is given also by +( )n( 3)n 6 1
23 [27]. It 

is clear here that the parameter is then given by = 3. A scaling 
operation can lead to the strong coupling expansion [6] from which one 
can extract ai as: 

= = = = ……a a a a1
3

, 1
3

, 1, 5
3

,1 2 3 4 (35)  

For the approximants F2 0 and F3 1, the difference between any two 
numerator parameters (a ai j) is not an integer and thus the numerator 
parameters lead to the well-known strong coupling asymptotic behavior  
[26]. For all higher orders approximants ( F F,4 2 5 3 …….), however, 
a ai j has the possibility to take integer values and thus lead to loga-
rithmic factors in the strong-coupling asymptotic behavior[26] which 
does not mach with the known strong-coupling expansion of the given 
series. In fact, the logarithmic factors in the strong coupling asymptotic 
behavior are multiplied by g a4 and g a5 for F5 3 (for instance) which 
means that such terms will be led by the power behaviors g a4 and g a5

while the logarithmic factors have minor effect at large g. This means 
that although for some approximants, a ai j have the possibility to be 
integers, one can still consider the numerator parameters matching the 
exact ones known from strong-coupling expansion of the given series. 
To test these expectations, we parametrized the approximant F5 3 in two 
ways, one by setting a a a a, , ,1 2 3 4 and a5 to equal the known exact ones 
while for the other parametrization we take a a a, ,1 2 3 from known exact 
ones while predicting a4 and a5 by considering more terms from the 
weak-coupling data. We found only marginal differences between the 
predictions of the two parametrization (Fig. 1). For more clarification of 
how it is important to incorporate the strong-coupling parameters, we 
generated the data in Table 1. From that table, it is clear that the fourth 
order approximant F6 4 for which all numerator parameters are set ac-
cording to the known strong-coupling behavior gives more accurate 
results than the fourth order approximant F5 3 for which one of the 
numerator parameters is taken as an unknown. 

A concrete advocate of the irrelevance of existing singular coeffi-
cients in the strong coupling expansion of the hypergeometric approx-
imants can be introduced by more deep analysis of its properties. For 

the given series, the strong coupling behavior of the approximant F
2

5 3

(for instance) is given by: 

+ + + +F g c c g c g c g c g
2

( )a a a a a a a a a5 3
1 2 3 4 51 1 2 1 3 1 4 1 5

(36) 

Here c c,1 2 and c3 are finite butc4 and c5 are singular. Let us write them 
explicitly: 

=

=

c

c

b b b a a a a a a a a
a a a a b a b a b a
b b b a a a a a a a a
a a a a b a b a b a

4
(3) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )

5
(3) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )

a

a

4 3 2 1 2 4 3 4 5 4 1 4
1 2 3 5 1 4 2 4 3 4

5 3 2 1 2 5 3 5 4 5 1 5
1 2 3 4 1 5 2 5 3 5 (37) 

Clearly these coefficients are singular but also their factors of the sin-
gular terms having opposite signs. One thus can hope to regularize the 
fourth and the fifth terms in the strong-coupling expansion. To do that 
let us substitute the given parameters and add a fictitious variable in 
the singular terms and then take the limit as 0. In this case we have: 

+ =

= × × +

× × +

c g c g
g g

g g

g g
O

(0.0210944 ) ( 2) (0.0564589) ( 2)

1 1. 054 7 10 2. 8229 10

9. 7328 10 2. 605 0 10 ( )

4
5/3

5
7/3

5/3 7/3

2

5
3

2

7
3

3

5
3

2

7
3 (38) 

Now taking the limit as g( , ) ( , 0), we get 

+ = × ×c g c g
g g

9.732 8 10 2.605 0 10
4

5/3
5

7/3
3

5
3

2

7
3 (39) 

In this case the strong-coupling approximation for the ground state 
energy then takes the form: 

+ +E g g
g g g

( ) 0.66649 0.13506 0.072736 0.00973
0

1
3 1/3 5

3 (40) 

One can test the validity of this result by taking =g 50 to get 
E (50) 2. 490 60 while the full F5 3 approximant gives =E 2.49361410
compared to exact result as =E 2.499710 . 

In incorporating the numerator parameters from the known strong- 
coupling behavior and in going from low-order approximants to higher 
orders, the convergence is improved in a systematic way. The predic-
tions from successive approximants are shown in Table 2 which clearly 
reflects the improvement of the results as we increase the order. In the 
following, we will present the details about F8 6 approximant only (sixth 
order in using weak-coupling, large-order and strong coupling data). 
The bi-parameters in the F8 6 function can then be obtained from 
matching the coefficients of the series expansion of F8 6 term by term 
with the coefficients in the perturbation series in Eq. (34). We obtained 
the following values for the parameters bi: 

Fig. 1. Comparison between resummation of the ground state energy for the 
+0 1

4 theory using two different parametrization of the F5 3 approximant. In the 
third order parametrization (red color) we set all values of numerator para-
meters to be , , 1,1

3
1
3

5
3 and 7

3
from the known strong coupling expansion of the 

theory. For the other parametrization (fifth order, green color), we take 
= = =a a a, , 11

1
3 2

1
3 3 while a4 and a5 are obtained by considering two more 

orders from perturbation series. 

Table 1 
The predictions of the fourth order approximants of the hypergeometric-Meijer 
resummation for the ground state Energy in Eq. (34) compared to the exact 
results from Ref. [30]. For the fourth order approximant F6 4, all numerator 
parameters are set from the strong-coupling behavior. In the other fourth order 
approximant ( F5 3), we set the first four numerator parameters from the strong 
coupling behavior while the last numerator parameter as well as the three 
denominator parameters are determined using weak-coupling information.      

g F( ) th5 3 4 F( ) th6 4 4 Exact  

0.5 0.696872 0.696614 0.696176 
1 0.806154 0.805178 0.803771 
50 2.61212 2.54504 2.49971 
1000 7.18095 6.85807 6.69422 
20000 19.6354 18.6059 18.1372 
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= = =
= = =

b b i b b
b I b b b

0.448491, 1.02679 2.64427 , ,
0.585824 0.748355 , , 12.6379.

1 2 3 2

4 5 4 6 (41) 

Accordingly, the sixth order resummation gives; 

= … …

=
…

…
=

=

E F a a b b g

b

a
G

a a
b b g

1
2

( , ; . ; 3 )

( )

2 ( )

1 , ,1
0, 1 , , 1 3 .k k

k k

0 8 6 1 8 1 6

1

6

1

8 8,7
1,8 1 8

1 6 (42)  

5.2. Predicting the asymptotic strong-coupling behavior using 
hypergeometric-Meijer algorithm 

In resummation techniques, the parameter representing the 
asymptotic strong-coupling behavior is taken arbitrary and is de-
termined through optimization technique. For instance, in the Borel 
with conformal mapping algorithm in Ref. [33], results are optimized to 
give the best convergence. However, it has been shown in the literature  
[37–40] that different optimizations can lead to different strong-cou-
pling behaviors for the same theory. In the following we extract the 
asymptotic strong-coupling behavior of the ground state energy of the 

+0 1
4 theory and compare it with known exact results. In fact, in our 

algorithm no optimization is needed to determine the numerator 
parameters and thus the asymptotic strong-coupling behavior is unique 
for the same theory provided that we incorporate the same information 
as input. 

For the approximant …F a a b b g( , ; , ; )4 2 1 4 1 2 for instance, the above 
discussions telling us that the strong coupling behavior is given by 

…F a a b b g g( , ; , ; ) s
4 2 1 4 1 2 where =s Max a a a a( , , , )1 2 3 4 . We 
parametrized the approximant …F a a b b g( , ; , ; )4 2 1 4 1 2 for the ground 
state energy using weak-coupling and large-order data and found that 
as g we have E gs

0 with =S 0.325731. This is a fifth order pre-
diction for s while the exact value is =s 1/3 0.333333 as shown above. 
Of course higher order approximants shall give better prediction for s. 
Accordingly, one can claim that our algorithm can be used to predict 
accurate asymptotic strong-coupling behavior of a divergent series from 
the knowledge of weak-coupling and large-order data. 

6. Vacuum energy of the PT -symmetric +i 0 1
3 theory 

Another example for a divergent series with zero radius of con-
vergence is the ground state energy of the PT -symmetric i 3 theory 
with Hamiltonian density operator in the form: 

= + + +H m x
i g

x1
2

1
2

( ) 1
2

( )
6

( ).2 2 2 2 3
(43) 

In +0 1 space-time dimensions, the ground state energy of this theory 
has the perturbation series [28] 

= + + + +E g g g g O g1
2

11
288

930
288

158836
288

38501610
288

( ).0 2
2

2
3

4
4 5

(44) 

Also, the strong coupling parameters are given in Ref. [2] as: 

= = = = = = …a a a a a a1, 1
5

, 3
5

, 7
5

, 11
5

, 15
5

, .1 2 3 4 5 6 (45) 

In using these parameters and matching the expansion of F6 4 with ex-
pansion in Eq. (44), we get the numerators parameters bi as: 

= =
= =

b i b b
b b

0.43189086698613627‘ 1.2561659803549978‘ , ,
4.605221446564435, 0.3721464374405092.

1 2 1

3 4 (46) 

Accordingly, the fourth order hypergeometric-Meijer resummation for 
the vacuum energy is: 

= … …

=
…

…
=

=

E F a a b b g

b

a
G

a a
b b g

1
2

, ; . ;

( )

2 ( )

1 , ,1
0, 1 , , 1 ,k k

k k

0 6 4 1 6 1 4

1

4

1

6 6,5
1,6 1 6

1 4 (47) 

where = 5
24 [2]. The vacuum energy of the PT -symmetric +i 0 1

3

theory has been resummed using different techniques in Ref. [2]. Our 
calculations from successive approximants are shown in table-3 where 
it is compared to the 150th order of order-dependent mappings method 
(ODMs) in Ref. [2] and also compared to exact results. Again the hy-
pergeometric-Meijer algorithm in this work gives very accurate results 
using a relatively low order of the perturbation sires as an input. 

7. Critical exponents of the O (4)-symmetric quantum field model 

The Lagrangian density of the O N( )-vector quantum field model is 
given by: 

L = + +m1
2

( )
2 4!

,2
2

2 4
(48) 

with = ………( , , , .. )N1 2 3 is an N-component field having O N( )
symmetry where = + + + ………( .. )N

4
1
2

2
2

3
2 2 2. For =N 4, it can 

describe the the phase transition in QCD with two light flavors at finite 
temperature [32]. Recently, the six-loops order for the renormalization 
group functions , 2 and m2 has been obtained in Ref. [33]. In 
Minimal-subtraction technique and in three dimensions, the six-loops 
order for the -function in three dimensions is given by: 

+ + +g g g g g g g g( ) 4 8.667 55.66 533.0 6318 86768 .2 3 4 5 6 7

(49) 

The large-order asymptotic behavior of this series is characterized by 
the parameters = 1 and =b 5 [4]. The strong-coupling asymptotic 
behavior is not yet known (up to the best of our knowledge). The sui-
table weak-coupling and large order parametrized hypergeometric- 

Table 2 
The predictions of the first, second,…and sixth order of approximants of the hypergeometric-Meijer resummation for the ground state Energy in Eq. (34) compared to 
the exact results from Ref. [30].          

g F3 1 F4 2 F5 3 F6 4 F7 5 F8 6 Exact  

0.5 0.728373 0.692206 0.695864 0.696614 0.696026 0.696120 0.696176 
1 0.864509 0.794639 0.803068 0.805178 0.803157 0.803716 0.803771 
50 3.04726 2.37129 2.49361 2.54504 2.46220 2.50062 2.49971 
1000 8.33438 6.28700 6.67868 6.85807 6.54297 6.70275 6.69422 
20000 22.66 17.0027 18.0962 18.6059 17.6947 18.1657 18.1372 

Table 3 
The sequence of approximants from first ( F3 1) to fourth ( F6 4) order hypergeo-
metric-Meijer resummation for the ground state energy corresponding to the 
Hamiltonian in Eq. (43) compared to the 150th order of ODMs resummation 
methods in Ref. [2] and also to exact results.         

g F3 1 F4 2 F5 3 F6 4 ODMs Exact  

0.5 0.51749 0.516869 0.516891 0.516892 0.516892 …
1 0.53258 0.530669 0.530775 0.530785 0.530782 0.530782 
288/49 0.628506 0.610237 0.612557 0.613031 0.612738 0.612738 
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Meijer approximant for is then: 

…

=
…=

=

g g F a a b b g

g
b

a
G

a a
b b g

( ) , ; , ;

( )

( )

1 , , 1
0, 1 , 1 ,k k

k k

4 2 1 4 1 2

1

2

1

4 4,3
1,4 1 4

1 2 (50) 

where = = = =a a a a15.4564, 2.02503, 0.598824, 0.1362481 2 3 4 and 
= =b b0.315181, 2.025581 2 . zeros of g( ) defines fixed points where 

our resummation result gives =g( ) 0c at = =g g 0.358733c . Here gc is 
the critical value of the coupling where it has been predicted (but at 
five-loops) in Ref. [25] to be =g 0.34375c . The critical exponent is 
defined as g( )c which gives = 0.781617 compared to Borel with 
conformal mapping result as 0.794(9) from Ref. [33] and Monte Carlo 
simulations result that gives the value 0.765 [34] while the recent 
conformal bootstrap calculations gives the result = 0.817(30) [41,33]. 

The six-loops series for the anomalous mass dimension m2 has been 
obtained in the same reference (Ref. [33]) where: 

+ + +g g g g g g g( ) 2 1.6667 9.500 64.39 571.9 5983 ,m
2 3 4 5 62

(51) 

and the corresponding large-order parameters are = 1 and =b 5. The 
hypergeometric-Meijer resummation gives the exponent as: 

= + = + … …

= +
…=

=

g F a a b b g

b

a
G

a a
b b g

2 ( ) 1 (( , ; . ; )

1
( )

( )

1 , ,1
0, 1 , 1 ,

m c c

k k

k k
c

1
4 2 1 4 1 2

1

2

1

4 4,3
1,4 1 4

1 2

2

(52) 

where =a 2.453171 , =a 0.8936162 , =a 9.620993 , =a 0.0584134 , 
=b 0.2564231 , =b 2.402272 . That parametrization of the approx-

imant yields the result = 0.744181. The Monte Carlo simulations result 
from Ref. [34] gives 0.750(2) and the recent Borel with conformal 
mapping result is 0.7397(35) [33] while conformal bootstrap gives the 
result = 0.751(3) in Ref. [41]. 

The six-loops order for the field anomalous dimension 2 is [33] 

+ +g g g g g g( ) (0.16667 0.16667 0.9028 6.5636 55.93 ),2 2 3 42

(53) 

with = 1 and =b 4 [4]. The resummation result is 

= …

=
…

=

g g F a a b g

g b
a

G
a a

b g

( ) 0.16667 , ; ;

0.16667 ( )
( )

1 , ,1
0, 1 ,

k k

3
2

1 1 1 1

2 1

1

3 3,2
1,3 1 3

1

2

(54) 

where = + = = =a i a a a b7.62 7.85714 , 0.10777, , 12.91071 2 3 1 1 . Our re-
summation result gives = =g2 ( ) 0.036695c compared to Monte Carlo 
result 0.0360(3) [34] and recent Borel with conformal mapping result 
0.0360(4)[33] while recent conformal bootstrap calculations for is 
0.0378(32) [42]. The critical exponents predictions of this work are 
summarized in table-4 and compared to recent resummation results as 
well as simulations results. The five-loop resummation results are also 
listed in the table (second) to give an idea about precision of the algo-
rithm. We will not go far for such type of calculations as a full discussion 
of the critical exponents of the O N( ) model will appear in another work. 

8. Resummation of the seven-loops -function of the four 
dimensional 4 scalar field theory 

In MS-Scheme, the seven-loop for the perturbation series of the 
-function for the +3 1

4 scalar field theory has been recently obtained in 
Ref. [35] as: 

+ + +g g g g g g
g
3.000 5.667 32.55 271.6 2849 34776 474651

.

2 3 4 5 6 7

8 (55)  

The +3 1
4 theory is well known to have no fixed points and the series 

above has been recently resummed using the Borel-hypergeometric 
resummation algorithm [36]. The results of the Borel-hypergeometric 
resummation assured the non-existence of fixed points for the theory 
but on the other hand the convergence of the calculations was not 
perfect. We resummed the same series using our algorithm where we 
get: 

= … …

=
…=

=

g F a a b b g

g
b

a
G

a a
b b g

3 , ; . ;

3
( )

( )

1 , , 1
0, 1 , 1 ,k k

k k

4
2

2 1 4 1 2

2 1

2

1

4 4,3
1,4 1 4

1 2 (56) 

where =a 10.50291 , = +a i0.552104 2.066652 , =a a3 2 , =a 0.2340734 , 
=b i0.711745 2.333581 , =b b2 1 . To monitor the convergence of the 

calculations and thus compare with those presented in Fig.1 of Ref.  
[36], we generated the five and six loops resummation results too and 
plot all the results in Fig. 2. In the figure, the calculations prove also the 
non-existence of any fixed points for the theory but our calculations 
show a clear improvement of the convergence when compared to the 
Borel-hypergeometric results in Fig.1 in Ref. [36]. 

9. Resummation of the seven-loop -expansion for the fractal 
dimension of the critical curves for the self avoiding polymer 

Recently, in Ref. [43], the authors obtained the six-loop expansion 
for the fractal dimension df for the case =N 0 of the O N( )-symmetric 4

model. They introduced what they called self-consistent resummation 

Table 4 
In this table we list the six-loop (6L) hypergeometric-Meijer resummation for 
the critical exponents , and for O (4)-symmetric model. To give an idea 
about the precision of our calculations, we list (second) the five-loop re-
summation results (5L). Also, the results are compared to recent conformal 
bootstrap calculations (third), Borel with conformal mapping resummation 
(fourth) from Ref. [33] and also recent Monte Carlo simulations methods (last) 
from Ref. [34].       

N Reference  

4 0.74418 0.0366948 0.78162 This work-6L 
0.74858 0.0365246 0.789063 5-L 
0.751(3) 0.0378(32) 0.817(30) [33,41,42] 
0.7397(35) 0.0366(4) 0.794(9) [33] 
0.750(2) 0.0360(3) 0.765 [34] 

Fig. 2. The hypergeometric-Meijer resummation of the five, six and seven loops 
of the -function of the four-dimensional 4 theory. 
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procedure and used it to resum the associated divergent series. How-
ever, the seven-loop g-expansion has been recently obtained [35] from 
which one can extract the seven-loop order of the -expansion for any 
N. We shall stress her only the =N 0 case which is in the same class of 
universality with the self-avoiding polymer. In fact, the resummation 
for the seven-loop critical exponents for different N values will appear 
in another work[44]. Using the seven-loop expansions in Ref. [35], we 
obtain the flowing perturbation series up to 7 for the fractal dimension 
df : 

= + +
+

d ( )

2.0000 0.25000 0.085938 0.11443 0.28751 0.95613
3.8558 17.784 .

f

2 3 4

5 6 7 (57) 

Note that the first six terms in this result are compatible with the six- 
loop result in Ref. [43]. The large order parameters are = 3

8 and =b 4
[4]. We used this series to parametrize the hypergeometric approximant 

…F a a b b b2 ( , ; , , ; )5 3 1 5 1 2 3 which in turn leads to the result: 

d

G
a a a a a

b b b
1 , 1 , 1 , 1 , 1

0, 1 . ,1 , 1

f
b b b

a a a a a
2 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

5,4
1,5 1 2 3 4 5

1 2 3

3
8

1 2 3
1 2 3 4 5

(58) 

The parameters in this approximant take the values =a 3.682091 , 
= +a i10.5985 10.51252 , =a a3 2 , =a 1.182664 , =a 0.01157715 , 
=b 0.6882631 , =b 3.678742 , =b 13.31123 . This approximant yields the 

result =d 1.3307f for the two dimensional ( = 2) self-avoiding 
polymer. Note that the conformal field theory (also exact) result is 

= 1.33334
3 [43,45–48] while the recent self-consistent resummation 
result is 1.354(5). It is very clear that our seven-loop resummation result 
is very close to the exact result. In Table 5, we listed the five, six and 
seven loops resummation results to monitor the convergence of the 
results as the order increases. For comparison, we listed also the SC as 
well as exact results. 

10. Summary and conclusions 

We introduced what we can call it the hypergeometric-Meijer al-
gorithm for a resummation of a divergent series with zero radius of 
convergence. The suggested algorithm is capable of accommodating the 
large-order and strong coupling information and thus is able to accel-
erate the convergence to the exact results. In Ref. [14], Héctor Mera 
et.al followed a Borel-hypergeometric technique that led to a Meijer-G 
approximant algorithm which has been shown to produce precise re-
sults from weak coupling information as input. The algorithm we in-
troduced however avoids Borel or Padé techniques used in Ref. [14] 
and instead starting from the parametrization of a hypergeometric 
function that has the same n! growth factor characterizing the divergent 
series and then use the equivalent integral representation of Meijer G 
function as an approximant to the given perturbation series. In fact, 
using weak coupling information in both the hypergeometric-Meijer G 
approximant in our work and that in Ref. [14] leads to different para-
metrizations. This can be seen from the exact partition function of zero- 
dimensional 4 theory which has been obtained by a third order para-
metrization of hypergeometric-Meijer G approximant in our work while 
in Ref. [14] the same result has been obtained at the fifth order. 

Incorporation of the large-order information has been shown to 

accelerate the convergence and in adding the strong coupling data into 
the resummation technique, the convergence is even faster a fact that is 
traditionally known in resummation techniques [4]. In our work, 
however, we obtained a new constraint on the parameters of the hy-
pergeometric approximant which relates them to one of the parameters 
in the large-order asymptotic behavior of the given perturbation sires. 
The validity of this constraint has been tested in our work by obtaining 
the exact result of the zero-dimensional partition function of the 4

theory at the first order parametrization using weak-coupling and large- 
order data while in adding strong coupling data, the exact result is 
completely parametrized from large-order and strong-coupling data. In 
both of these different parametrizations that lead to the exact result, the 
constraint ( == =a b b2i

p
i i

p
i1 1

2 ) on the parameters has been ap-
plied. 

The algorithm is also applied to resum the ground state energies of 
the 4 as well as the PT -symmetric i 3 field theories in +0 1 space- 
time dimensions (quantum mechanics). It shows accurate predictions 
although few number of perturbative terms are employed. 

It is well known that till now a closed form of the strong-coupling 
asymptotic behavior for quantum field theories in dimensions greater 
than one has not been obtained yet. In literature one can find that some 
predictions for the asymptotic behavior can be extracted from re-
summation techniques. These resummation algorithms include arbi-
trary parameters that have to be optimized to give the best con-
vergence. Such optimization can lead to a prediction of the strong- 
coupling behavior. However, different optimizations can lead to dif-
ferent results for the same theory. In our algorithm, on the other hand, 
all the parameters are uniquely determined from the input information 
and thus the predicted asymptotic strong-coupling behavior is unique 
for the same theory with the same information as input. We tested our 
algorithm regarding this fact and obtained an accurate prediction for 
the asymptotic behavior of the ground state energy of the +( )4

0 1 theory 
using weak-coupling and large order data as input. 

Since the type of divergent series stressed in this work shares the 
same properties of the divergent series representing the renormaliza-
tion group functions in quantum field theory [4], we applied it to resum 
the recent six-loops orders for the , m2 and 2 renormalization group 
functions of the O (4)-symmetric model in three dimensions. Precise 
results of the corresponding critical coupling as well as critical ex-
ponents have been extracted from resummation of the renormalization 
group functions. 

The 4 scalar field theory is well known to have no fixed points in 
four dimensions. The hypergeometric-Borel resummation algorithm has 
been applied recently to resum the recent seven-loops perturbative 
order of the -function. The result of that algorithm asserts the non- 
existence of fixed points but the convergence of calculations is ques-
tionable. We resummed the same series using our algorithm where our 
calculations shows also no fixed points but on the other hand con-
vergence of the calculations has been greatly improved. 

The seven-loop perturbation series ( -expansion) for the fractal di-
mension df of the self-avoiding polymer has been listed in this work. 
Resumming that series using our algorithm introduced in this work 
gives a very accurate result for the two dimensional case ( = 2). Note 
that, in two dimensions, the -series is well known to have a slower 
convergence than the three dimensional case. Accordngly, its re-
summation offers a challenging test to our algorithm. The accurate 
result we obtained ( =d 1.3307f ) reflects an extraordinary success to our 
rsummation method specially when we know that the exact value is 

=d 4/3 1.3333f . Our resummation result might be the most accurate 
resummation prediction for the same series in literature. 

Since the Meijer-G function is represented by a Mellin-Barnes type 
of integrals, there is a possibility for the existence of Stokes phenomena  
[19]. So one can have hypergeometric-Meijer non-summability like 
cases of non-Borel summability. For such cases one resorts to the re-
summation of resurgent transseries which kills the complex ambiguity  
[20]. We applied our algorithm to resum the transeeries of the partition 

Table 5 
The five, six and seven-loop hypergeometric-Meijer resummation for -expan-
sion of fractal dimension of the critical curves for the self avoiding polymer. The 
results are compared to self-consistent (SC) resummation result from Ref. [43] 
and the exact result [48] is also listed.        

Method 5-loop 6-loop 7-loop SC Exact  

df 1.3571 1.3464 1.3307 1.354(5) 1.3333 

A.M. Shalaby   Results in Physics 19 (2020) 103376

9



function of degenerate vacua 4 theory where we obtained exact result 
at the third order parametrization of hypergeometric-Meijer approx-
imant. After incorporating the large order data, the same result has 
been obtained using first order parametrization. 
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