
Engineering Journal of the University of Qatar, Vol. 12, 1999, PP. 125-149 

A COMPARISON BETWEEN ARTIFICIAL NEURAL 
NETWORK AND A GEOSTATISTICAL TECHNIQUE IN 
THE ESTIMATION OF REGIONALIZED VARIABLES 

E. E. Tawo* and Saleh M. Al-Alawi** 
*Department of Petroleum & Mining Engineering 

**Department of Electrical & Electronic Engineering 
Sultan Qaboos University, Al-Khod 123 

Sultanate of Oman 

ABSTRACT 

In all rrnrung estimation techniques data play a very important role. 
Insufficient data would mean the quality of the estimate is unreliable. Due to 
the importance attached to a good and representative data set, the application 
of Geostatistics to the mining industry puts data before any model. Obtaining 
a good data set which is usually from drillhole samples is an expensive 
experiment besides the economic constraint usually placed on the amount of 
data which can be collected particularly at an early stage of a mineral 
development. 
The advent of a novel technique in 'Artificial Neural Network' (ANN) and 
its application to the minerals industry is compared with a tested geostatistical 
technique. Both techniques are presented and tested on a Bauxite deposit. The 
effectiveness of ANN as a cost saving technique is appraised. 
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INTRODUCTION 

The need for appropriate techniques to estimate regionalized variables in the 
minerals industry cannot be over emphasised. Developing and using an appropriate 
technique will enhance confidence levels about a deposit but some doubt will always 
exist until it has been fully exploited. 

Once a mineralization has been found, there is often the need to delineate its 
extent as well as mapping the attribute z(x) distributed over a given area {.x € A}. 
The value z • (x) may be estimated from samples obtained by preliminary drilling and 
possibly, trenching, amongst other techniques, depending on the type of 

125 



E.E. Tawo and S.M. Al-Alawi 

mineralization. While a drilling program could be designed for a full appraisal of the 
mineralization, there is always scepticism and apprehension as to the intensity of the 
program, yet this work leads to the eventual decision about whether to proceed or 
not with the development of the ore body. The scenario described above is an 
expensive experiment in view of drilling cost, but carries with it a lot of 
expectatioins. This cost is even further increased if the diamond drill hole (DDH) 
diameter has to be increased to improve the quality of the information so that the 
uncertainties about the orebody are reduced. The confidence interval associated with 

increased hole diameter (volume Support) is higher than that for small diameter 

holes (point support). (Tercan & Dowd) 

It is the intention of this study to address this concern arising from the cost 
involved, by exploring the use of alternative approaches (Al·Alawi, S. & Tawo, 
E.E) to reducing the drilling volume, especially in the early stages of exploration. It 
is, however, emphasised that, it is not an attempt to replace the commonly used type 

of information, which is exact data, z( X a), a = 1, ... , ll , whose estimate z· (x) 

is usually some linear function of these input data: 

£(x) = <f>(z(xa)),a = l, ... ,n 

although other categories of data (soft data) have been examined (Tawo, E. E.; 
Joumel, A.: Alabert, F). The geostatistical technique used in this study is familiar, 
and well tested in mineral evaluation when compared with artificial neural network. 
There are, however, more sophisticated geostatistical techniques available. 

On the other hand, in recent years, considerable attention has been given to the 
ongoing development of forecasting models based on artificial intelligence 
techniques such as artificial neural networks (ANN) and expert systems. These 
techniques have been successfully applied to a wide range of engineering 
applications by many authors reporting higher accuracy compared to classical 
methods(Par~etal., 1991; Kalametal., l995;Al·Alawietal., 1995). 

Artificial Neural Networks (ANNs) are massive parallel information 
architectures composed of many simple processing elements intercOimected to 
achieve certain collective computational structures. ANNs possess features which 
are particularly attractive for data analysis. These features include graceful 
degradation, robust recall with fragmented and noisy data, speed inherent to parallel· 
distributed architectures, generalisation, and the capability of modelling non·linear 
systems. Due to these features, ANNs has generated increasing acceptance for their 
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application in a wide range of fields. In engineering, this new technology has 
demonstrated a remarkable success as a result of numerous applications in 
electrical, civil, mechanical, petroleum and other engineering disciplines. Artificial 
neural networks, however, are relatively new to the field of Mining Engineering, and 
have been sparsely demonstrated in this area. This novel approach, is believed, to 
provide great benefits if applied in this discipline. 

To the knowledge of the authors, no comparison with non-classical methods 
has so far been made and hence the need for the current work. A linear geostatistical 
technique, as one of the non-classical techniques, is applied to a real data set along 
side the ANN technique. The performances of both techniques are judged against 
the actual data set as a means of cross-validation, and their results are in turn 
compared and analysed. 

A summary of both techniques is presented omitting the more rigorous aspects 
which could be found in standardized texts of the respect subject areas. 

A linear geostatistical technique is compared with artificial neural network 
technique for the prediction of sample values at pre-defined locations. The 
information gained from trained network, shows it to be an appreciable and cost 
effective tool where there is a constraint in obtaining further real data, albeit at a 
lower confidence level. The geostatistical approach addresses this to an extent with a 
conceptual approach to errors through the study of a structural function underlying 
the regionalized variables and Kriging variances after estimation. Kriging is 
performed on a data set for a bauxite deposit with a random stratified grid. Results 
from a geostatistical approach are compared with predictions from an artificial 
neural network system. Both methods are compared from the point of view of 
relative performance with reference to actual values. 

The Data Set 

A bauxite data set is used in this study. It comprises x andy co-ordinates of 
the drill hole locations, thickness of the mineralization and assays for the first 
mineral (% A}z03) alumina, and the second mineral(% Si02) silica respectively. The 
drill hole locations with an approximate sampling interval of I OOft, arc shown in 
Fig. 1. 

This data set is organized in such a way as to reveal the type of distribution, 
especially as the choice of the mathematical method to be used for block estimation 
IS usually a function of the frequency distribution ofthe sample values. The geology 
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of the deposit also influences this choice. These are represented in the histograms in 
Figures 2. 
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Fig. 1. Distribution of bore bole locations 

However, since only a small proportion of the data values can be considered as 
having extreme values, their impact on estimation is minimal, and hence no 
assumptions are made about the distribution. The statistics of the raw data are 
presented in Table 1. 

Table 1 : Statistics of the Raw Data 

Variable Mean Variance 

Thickness 123.58 6554.56 

Alumina 248.71 58660.88 

Silica 1138.31 1026845.53 
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Histogram for thickness from 
the raw data 
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Fig. 2. Data distribution 
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It is evident from the histograms of the raw data that it is not distributed 
normally. This is typical of most deposits where sample values are not 
symmetrical. The sample values in the case study are positively skewed. The 
variances of the data values are seen to be highest for silica. This is possibly due to 
an increase in the relatively 'erratic' values occun·ing at the tail end of the skewed 
distribution. These features are further characterized in the structural analysis of the 
individual variables. 

GEOSTATISTICS 

Theoretical Considerations 

The theory of geostatistics has already been well documented by a number of 
authors (Joumel and Huijbregts 1978, Matheron 1971). Important aspects that 
emphasise the criteria for a good estimation of regionalized variables are 
summarized below. 

Random Functions 

Many earth-science variables exhibit major characteristics which are random 
behaviour and a certain level of continuity. While it is appreciated that the variable is 
random, knowledge of the value at a point x gives some information about other 
values in its neighbourhood, this phenomenon is simply described as 'continuity'. 
The information, however, may be insufficient to enable accurate prediction of the 
new values in the neighbourhood, and the variable would exhibit a random 
behaviour. This randomness is accounted for by considering the value z(x) of the 
variable z at location x as a realization, or the outcome (e), of a random variable 

Z(x). The element of continuity is given by the variogram y (h) which associates 

to each distance h, a measure of the difference between values a distance h apart. 

2 y (h)= variance (Z(x+h) - Z(x)) 

An experimental variogram is first calculated for the data, and then fitted by a 
simple mathematical function. This function then represents the degree of continuity 
ofthe variable under study. 

The Spherical Scheme 

About 90% of known orebodies have an intrinsic scheme(Royle, A.G.) This is 
a scheme characterizing a transition phenomenon, i.e. one in which the semi-
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variogram reaches a finite value ash increases indefinitely. The value ofh at which 

y{h) reaches a finite value is called the range of influence ofthe phenomenon and 

is denoted by the letter a. 

In Matheron's spherical scheme 

3 h 1 h 3 
y(h)= Co+ C {--- -(-) }for h <a 

2 a 2 a 
=Co+C for >a 

other schemes that represent transition phenomena are the exponential type in which 

ANN Architectural Design 

As illustrated in Figure 3, the network architecture is composed of many simple 
processing elements that are organised into a sequence of layers. These are the 
input, hidden, and the output layers. The neurons in the input layer receive two 
input signals representing the co-ordinates (Xi) and (Yi) in a given grid. Therefore, 

two neurones are used in the neural network input layer. 

Xi Thi 

Yi Ali 

SLi 

Fig. 3. The proposed ANN architecture 
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The output layer, on the right-hand side, consists of three output neurons 
representing the thickness of mineralization of the deposit, the percentage content of 
alumina, and the percentage content of silica. Between the input and output layers, 
there is generally one or more hidden layers. Detennining the number of hidden 
layers and the appropriate number of neurons in each hidden layer is not an exact 
science. Research in this area [5,6] has proved that one or two hidden layers with an 
adequate number of neurons is sufficient to model any solution surface of practical 
interest. It has been found that a network with 6 to 8 nodes in the hidden layer would 
be a good choice. The network containing 7 hidden nodes, however, yielded the 
smallest error over the region of interest. 

Based on these results, one hidden layer containing seven neurons was used to 
develop the ANN architecture. 

Network Training 

The multilayer feedforward networks developed in this work were trained using 
the backpropagation (BP) paradigm developed in reference [8]. The BP algorithm 
uses a supervised training technique. In this technique, the interlayer connection 
weights and the processing element thresholds are first initialized to small random 
values. The network is then presented with a set of training patterns, each consisting 
of an example of the problem to be solved (the input) and the desired solution to this 
problem (the output). These training patterns are presented repeatedly to the ANN 
model and weights are adjusted by small amounts that are dictated by the general 
delta rule [8]. This adjustment is performed after each iteration when the network's 
computed output is different from the desired output. This process continues until 
weights converge to the desired error level or the output reaches an acceptable level. 
The system of equations that provides a generalized description of how the learning 
process is performed by the BP algorithm is sh0\\11 in Simpson [9]. 

For the present work. the training. process was performed using the 

NeuroShell™ simulator. After several adjustments to the network parameters and 
12 hours and 43 minuets of training time, the network converged to a threshold of 
0.0001. Predictions from this trained model were in agreement with the actual data, 

thereby producing an R2 value of 0.72 for THi, 0.78 for AL203 and 0.82 for 

Sj02. These results indicate that 72 percent of the variability ofthickness, 78 

percent of alumina, and 82 percent of silica can be explained by the ANN model 
developed in this work. 
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Having trained the network successfully, the next step was to test the trained 
network, using the test data set, in order to judge its performance. 

Network Testing and Validation 

The generalization capability of the models was tested by presenting 35 
patterns that were excluded from the data set prior to network training. Figures 4 
(a), (b), and (c) provide the results and illustrate the relationship between actual 
results and estimates obtained from the ANN-based model for thickness, alumina 
and silica contents for ten randomly selected sample locations. 

To validate these results, three of the more conunon techniques that are 
generally used to determine the accuracy and perfonnance of the model were used. 
These techniques are: mean absolute deviation (MAD), mean squared error (MSE), 
and mean absolute percentage error (MAPE). MAD is the average of the absolute 
differences between the estimated values and the observed or experimental values. 
MSE is the average of the squared differences between estimated and observed 
values, and MAPE is the average of the absolute differences between the estimated 
and observed values expressed as a percentage of the observed values. 

Statistical analyses of the results, shown in Table 2, indicate that the R2 values 
for the testing set were 0.876 for THi, 0.755 for AL203, and 0.792 for Si02. The 

results show that approximately 79 percent of the variation in the dependent variable 
estimates can be explained by the independent variables selected and the data set 
used. These results demonstrate that the ANN-based model developed in this work 
can predict the grades at unsampled locations with acceptable accuracy for the 
mineral under discussion. Verification of the ANN-based model's results is 
attempted using a geostatistical model with the same data and the results compared. 

Table 2. Statistical Analysis of ANN Models 

THi AL20 3 Si02 

MSE 807.20 12746.30 178645.500 

MAD 21.22 58.59 253.135 

MAPE 25.82 33.72 35.740 

SD 15.00 41.43 178.990 
R2 0.876 0.755 0.792 
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Fig. 4. Validated estimates by ANN and geostatistics 

Variography and Structural Analysis 

A geostatistical approach involved the computation of experimental variograms 
for the three regionalized variables that were used in the ANN approach. 
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Modelling 

A spherical scheme model was selected for the modelling process as most 
known orebodies exhibit an intrinsic scheme model. The computed experimental 
variograms and their models are shown in Figure 5. In the modelling process, a 
necessary condition, was that the mean squared error of the estimation between the 
true values and the estimated values (z *- z)2 was less or approximately equal to the 
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Variable -silica (Si02) 
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mean Kriging variance (()~),and the Kriging variance is in tum less than 1.1 times 

the mean squared error during point Kriging. A relative measure Jfthe goodness of 
fit for the model is given by the value of epsilon ~ , 

co 
~=-

c 
The closer the value of epsilon is to zero the better is the model. It can be seen 

from the table below that the variable thickness has the lowest value of epsilon. The 
three variables showed a consistent range in the modelling process, although the 
variability in silica was found to be very prominent as observed from the raw data 
sample statistics. The summary of the modelled parameters are shown in Table 3. 

Table 3: Modelled Variogram Parameters 

Variable Co c Range Co/ C 

Thicknes 430.0 3170.0 700.0 0.135 
Alumina 11800.0 25200.0 700.0 0.468 
Silica 14200.0 47300.0 700.0 0.300 
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Cross Validation 

To test the effectiveness of the estimation procedure, the modelled parameters 
were put through a cross validation process, as a means of justifying the Kriging 
technique chosen to perform the evaluation. It also serves as a test for the fit of the 
semi-variogram model to the data. The technique of cross validation is well 
documented in many texts and publications. (I. Clark, M.David (1979), Parker et al 
(1979)) 

Without loosing focus on the comparison between ANN and a geostatistical 
approach, a summary of the technique of cross validation is included here. It is the 
removal of one sample from the data set, and from the remaining samples in the data 
set, surrounding samples are used to estimate the value at this supposedly 
'unsarnpled' location. 

Suppose the total number of samples in the data set is n, the removal of one 
sample leaves (n-1) samples. The nearby samples to the removed value within the 
(n-1) samples in the data set are used to obtain an estimate z*(xj). The difference 
between the true grade and the estimated grade at the sample location is the actual 
error e.. , while the 'theoretical' or 'expected error' is measured by the Kriging 
variance during estimation. The procedure is repeated for the entire data set, ideally, 
the sum of the differences is expected to be zero, thus serving as a proof that the 
original semi-variograrn model fits the data in question. This proof is illustrated in 
the comparison between actual values and geostatistically estimated values based on 
the models for ten (10) randomly selected locations shown in Figure 6. Their 
performance for the three variables are shown in histogram form in Figures 4 (a), 
(b), & (c). 

A similar test approach by ANN to further test the effectiveness of the 
validated model is illustrated with a prediction for thickness, alumina and silica 
grades at fifty-eight (58) randomly selected locations on the grid. Co-ordinates of 
the specific points on the grid were selected as shown by Figure 6. An estimate was 
then obtained from the model based on the given co-ordinates. Examples of these 
estimates are shown in Table 4. 

COMPARISON BETWEEN BOTH TECHNIQUES 

For purposes of effective comparison, both the techniques of geostatistics and 
the artificial neural network were compared. To test their performance, a data sub-
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set from the original data set at thirty-seven locations were carefully but randomly 
selected. The selection was based on a spread within the domain of mineralization. 
The results given by both techniques were compared in turn individually and 
severally against the actual or 'true' values at the same locations. 
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Figure 6. Additional locations selected on the grid 

Table 4. Example ofEstimates for Locations Selected 

Co-ordinates TH· AkO" Si0'2 
X y 

400.00 1000.0 57.44 43.04 223.16 
400.00 1500.0 74.40 45.39 264.72 
500.00 1300.0 55.29 44.04 222.47 
500.00 2000.0 76.51 45.88 270.64 
600.00 1500.0 47.73 44.14 207.36 
600.00 1950.0 69.93 46.13 259.20 
700.00 1600.0 36.55 44.46 184.55 
800.00 1300.0 25.46 42.37 152.27 
900.00 900.0 25.40 26.77 102.89 
1000.0 700.0 4.00 3.00 41.00 
1100.0 1400.0 74.79 119.06 569.64 
1500.0 2200.0 113.24 128.65 763.68 
1800.0 1900.0 195.38 174.27 1210.1 
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For purposes of clarity, only one of the cases containing the entire thirty seven 
points is shown in Figure 7. The rest are represented on only ten randomly selected 
locations within the thirty~seven as shown in Figure 8. The summary statistics for 
both techniques on the same data set are presented in the following tables for 
comparison. 

Cross Validation for Thickness 
400~-~.~-~~~N~r-------------------------, 

--D--Kri~ng 
__.._.,~ar 

300 

11 18 21 28 31 36 

sample number 

Fig. 7. Estimates by ANN and Kriging 

The summary stat1st1cs concentrate on measures of location, spread and shape. 
These measures were compared to the estimates and the residuals and analysed 
statistically. 

Estimates (thickness) 

Actual ANN Kriging 

n 37.00 37.00 37 .00 
m 117.892 111.135 107.585 
cr 78.713 70.077 60.759 
cv 0.667 0.631 0.565 

min 20.00 26.00 30.72 
Q, 66.00 75.00 70.65 
M 102.00 90.00 89.50 

Q3 130.00 113.00 128.91 
max. 359.00 321.00 276.55 
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Estimates (alumina) 

Actual ANN Krillioll 
n 37 37 37 
m 226.054 204 281 218 069 
0' 218.836 160.178 165 248 
cv 0.968 0.784 0.758 

min 3 41 39.4 
0, 102 119 120.54 
M 146 144 147 
o. 278 212 288.9 

max 1104 593 714.64 

Estimates (silica) 

Actual ANN Krilling 
n 37 37 37 
m 1035 08 969 351 998 588 
0' 923 945 782.36 712.648 
cv 0 893 0.807 0 714 

min 41 149 192 
Q, 509 595 563 
M 677 711 714 
o. 1211 953 1182 

max 4632 3595 3154 

Residuals (thickness) 

ANN Kriging 
n 37 37 
m 0.181 0.278 
0' 15.002 18.266 

lOR 38 58.26 
MAE 0.258 0.281 
MSE 807.16 1242 02 

Residuals (alumina) 

ANN Kriging 
n 37 37 
m 0.588 0.215 
0' 41.88 44.40 

IOR 93 168.36 
MAE 0.341 0.335 
MSE 12771.77 10258.01 
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Residuals (silica) 

ANN Kriging 
n 37 37 
m 1.776 0.986 
cr 178.99 187.48 

lOR 358 619 
MAE 0.357 0.302 
MSE 178645.5 173246.3 

For the same set of results, a comparison between estimates from Kriging and the 
ANN for ten randomly selected locations are presented in Figure 8. 
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Fig. 8. Comparison between estimates from Kriging and 
the ANN for randomly selected locations 

STATISTICAL ANALYSES 

Generally, a technique that g1ves a residual mean (true values mn1Us the 
estimated values) closer to zero with less spread is preferred over another 
technique. Summary statistics of the randomly selected locations are shown in Table 
6. ANN gave residuals of the mean as 0.181, 0.588 and 1.776, while Ordinary 
Kriging gave corresponding values of0.278, 0.215, and 0.986 for thickness and the 
concentrations of alumina and silica. Apart from ANN having a lower residual mean 
for thickness which is closer to zero, Ordinary Kriging gave lower residual means 
for alumina and silica estimates which are in tum closer to zero. 

A residual distribution of the mean of 0.278, represents a difference of only 
8% , implying that Kriging produced biased estimates for thickness with a margin of 
8% under estimation. For the other two variables, Kriging gave lower residuals of 
the mean, with values of 0.215 and 0.986 compared to ANN values of0.588 and 
1.776 for alumina and silica. These values represent only 10% and 6% under 
estimation for alumina and silica by ANN. A similar pattern of results is also seen 
in the comparison of standard deviations, mean absolute errors(MAE) and the mean 
squared errors(MSE) 
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Estimates 

Comparing the distribution of the estimates by ANN and Ordinary Kriging to 
the distribution of the true values, the means of the estimates by Kriging are in 
general closer to the means of the actual values compared to the ANN means. Lower 
variances and standard deviations also observed point to the fact that the distribution 
of Ordinary Kriging estimates have less spread than the distribution of the ANN 
estimates and the true value estimates. This is in consonance with the smoothing 
effect of Kriging. A procedure that uses few nearby sample values will produce 
estimates that are less smoothed than one that combines many nearby values such as 
Ordinary Kriging. 

Lower and Upper Quartiles 

The data set is split into quartiles and arranged in increasing order, a quarter of 
the data falls below the lower quarter or first quartile (Ql}, and a quarter falls above 
the upper or third quartile (Q3}. 

Ordinary Kriging estimates gave Q 1 and Q3 values that are consistently closer 
to those of the true values than the ANN estimates. This confirmed that the 
distribution ofthe Ordinary Kriging estimates is closer to that of the true values than 
the ANN estimates. 

Based on the statistics presented, the differences in the results obtained by 
both techniques are negligible. This emphasizes the effectiveness of the estimation 
techniques, especially where there is a large amount of data. Ordinary Kriging is, 
however, seen to be marginally better. 

To further test the effectiveness of both techniques for the purposes of cost 
saving, another comparison was performed at unsamplcd locations and their relative 
performances assessed. 

Estimation of Unsampled Locations 

Point estimation using Ordinary Kriging and ANN for locations that were not 
sampled was performed with the view to determining the relative perfonnance of 
each technique. Most importantly the suitability of ANN as an effective tool in 
predicting values at unsampled locations was also detem1ined with the ultimate 
objective of using ANN as a cost saving tool in a drilling operation. However, the 
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true grades at these points are not known. A grid showing 58 randomly selected 
unsampled locations together with 163 locations whose tme values are known is 
shown in Figure 6. 

Estimates obtained using both teclmiques at these locations are shown in Figure 
9 for thickness, one of the three variables. Although the comparison here is relative, 
both techniques behaved in line with their previous performance when the estimates 
and residuals were compared (Fig.9a). A significant difference between both 
techniques is, noticeable at locations where ANN gave very low predictions 
(Fig.9b). This is essentially due to insufficient data being available, resulting in such 
locations being assigned minimum values that were set during the ANN network 
training. 

This effect is further illustrated by examining specific locations (parity regions) 
having with very low predicted values. Figure 9c shows that ANN predictions were 
generally higher than the Ordinary Kriging estimates at the periphery of the deposit. 

"0 

300 

250 

ho 
l 
4150 
II. 

100 

"' 

50 

-+-Kn<,png 
-e-ANN 

Unsampled locations 

16 }1 ]fi Jl Jti 40 51 

••mpl•numbar 

(a) 

Relative difference between Kriging & ANN 

~ 
;i 

:hill~~.%: l 
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 

sa~enumber 

(b) 

146 



A Comparison between Artificial Neural Network and a Geostatistical Technique 

Parity Regions (locations) , ... 
• • • 

2000 • • • • • . • • :. ~-+ " • 
II • 

• • • • I , • • u ·---• 

r~· 
I •ooo 

• • • • • D • 

500 -- -· --

$00 1000 ,,.,. 2000 , ... 
I.COOrdln8tU 

(c) 

Fig. 9 Predictions by both techniques 

This observation was found to be consistent for all the estimated variables, while the 
Ordinary Kriging estimates are seen to be higher within the deposit. These, however, 
are not any higher than the estimates at known locations, especially when compared 
to the analyses between true and predicted grades and the residuals. 

SUMMARY AND CONCLUSION 

In this study, artificial neural network and gcostatistical based models were 
developed and used in the estimation of point grades within a defined grid system. This 
consisted of 163 sample locations, their x andy co-ordinates, thicknesses and their assays. 

A comparison of both techniques showed a very close agreement in the results 
obtained, provided there is a significant volume of data. Differences in the results 
were generally in magnitudes of 8%, 10% and 6% for the three estimated variables, 
thickness, percentage alumina, and percentage silica, when compared with the actual 
grades. Based on the performance of both techniques on known sample locations, the 
models were extended to the prediction of point grades at unsamplcd locations for 
the same variables. Results at this stage when compared showed an increase in 
disparity between both techniques as data become sparse, with the geostatistical 
model having an edge on the ANN model. This suggests that the ANN technique is 
more data sensitive than the geostatistical technique which is seen to be more robust. 

This disparity is particularly significant at the edge of the deposit where data 
are generally less concentrated. Like most estimation algorithms that are linear an~ 
distribution dependent, their performance at these locations become reduced. 
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It can therefore be concluded that, ANN can be used as an effective tool in 
mineral resource evaluation at the production stages as a complimentary tool to a 
geostatistical technique by virtue of its speed, and ease of operation. 

ANN may have further uses at the exploration stage such as being used to 
select an appropriate drilling grid or closing in on a drilling grid pattern. 
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