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ABSTRACT 

This paper proposes clock synchronization algorithms based on the idea in which 
randomly chosen m out of the total N processors cooperate to perform the clock 
adjustment of all processors in a distributed system. Selection of m processors is 
performed in a fully distributed way. Two types of algorithm which include 
different random mechanisms of processor selection are described. In the first 
algorithm, all processors adjust their clocks to the average of received clock signals 
issued by randomly chosen m processors. In the second algorithm, each processor 
chooses m processors randomly at its own will and adjust its own clock to the 
average of the chosen processor clocks. Fault tolerance against processor or link 
failure is taken into account in both algorithms. These algorithms exhibit desirable 
features in practical sense like simplicity in implementation, a small number of 
message exchanged, etc., so that the algorithms can be applied to sufficiently large 
system. Transient and steady state performances of the proposed algorithms are 
verified through simulation. 

INTRODUCTION 

Recently, clock synchronization in a loosely coupled distributed system has 
received substantial attention as one of the basic operating system functions or 
network control primitives. Processors cannot always keep in synchronization 
without any control. In order to enable processors to maintain clocks that are 
synchronized with one another at any time, periodical clock resynchronization 
mechanisms are needed. The problem is more complicated if there exist some 
faulty processors or communication failures. Clock sysnchronization plays an 
important role in many diverse applications like computer communication, 
real-time computing systems, data gathering and control and command systems. 

Clock synchronization algorithms so far reported can be classified into two major 
categories, namely, a master-slave algorithm and a fully distributed algorithm. In 
the master-slave algorithms, all processors set their clocks to the value issued by a 
master processor. The master processor is not assigned ahead of time but rather 
elected (1) or agreed upon (2) according to some procedure. These procedures are 
distributed in the sense that any processor can be a master provided that all 
processors agree on that choice. In a fully distributed algorithms (3), all processors 
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in the system exchange their clocks first, and then, each processor adjust its clock 
by using all the exchanged clocks. 

In the master-slave algorithms, any processor may be required to become a 
master when a failure happens to the current master processor. In the TEMPO's 
algorithm implementation (1), an election mechanism is carried out using a 
time-out mechanism. The first processor whose timer expires after a failure has 
occurred in the current master processor becomes a candidate for the new master. 
After the candidate broadcasts an election message to all processors notifying them 
of its candidacy, a new master is elected among them. An autonomous recovery 
mechanism is embedded in a another algorithm (2). According to the algorithm, a 
processor which has the fastest clock becomes a master in each clock synchroniza­
tion period. In these ways, the master-slave algorithms need some sort of 
mechanism to recover from a specific processor failure. In addition, the time taken 
to decide a winner master among contending candidates might be long, especially 
in a large system. 

The fully distributed algorithm (3) focuses on fault tolerance against even 
malicious failures. In order to tolerrate the number off malicious processors, f + 1 
rounds of message exchange are needed between all the processors to decide a new 
clock value. A message contains the clock value of the sender process at the instant 
of transmission. In the first round, all processors exchange their own private clocks 
by sending their clock values to all processes in the system. In the f succeeding 
rounds, all processors exchange other processor's clocks. These algorithms are not 
practical in a large system since a large number of message exchange is needed. 

The clock synchronization algorithms in this paper are designed to have two main 
characteristics. First, distributed control is employed so that there is no need to 
consider a specific processor's failure. Second, simplicity is required so that the 
techniques apply even for large systems. That is, a practical algorithm should work 
with small number of message exchanged between processors for efficiency in 
utilizing communication resources. To meet the characteristics mentioned above, 
algorithm based on a random mechanism are proposed, in which a random 
selection of m processors out of N cooperate to adjust all clocks in the system. 
These m processors are to chosen in a fully distributed manner. Since a subset of all 
processors controls the adjustment of all clocks, these algorithms are referred to as 
partially distributed algorithms in this paper. Two types of partially distributed 
algorithms which include different random mechanisms of m processor selection 
are described and their performances evaluated in the following sections. 
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PARTIALLY DISTRIBUTED ALGORITHMS 

Assumptions 

Consider a geographically distributed system consisting of N processors and 
communication links connecting them. No restriction on the network topology is 
assumed. Let the set of processors and the corresponding clock times be (Pv P2 , 

...... , Pn) and (C1 , Cb ...... , Cn), respectively. The following two conditions are 
assumed in this paper. 

(Al) All clocks of non-faulty processors are assumed to be fairly accurate and run 
approximately at the same rate. 

1~ C;(t)-ll<p (1) 

where a fixed value p represents the maximum error in a clock's running rate 
against the real time t. The clocks are not necessarily synchronized at the 
initial execution of the algorithms. 

(A2) Some restriction on the transmission delay is needed. More specifically the 
following condition is assumed if there are no failures in the system. 

(2) 

where d;,r is the transmission delay between P; and Pr. The interval between 
two contiguous synchronization controls is assumed to be long compared with 
the maximum transmission delay, d.nax· 

A processor or a communication link might be faulty during synchronization 
control. In fact, a faulty processor might report different clock times to different 
processors and also messages might not reach their destinations due to link failures. 
In this paper, the assumptions (Al) and (A2) are not always kept in the case of 
processor or communication link failures. In other worcis, if (Al) and/or (A2) are 
not satisfied, some kinds of failures are considered to have happened. 

Algorithm Description 

Algorithms for clock synchronization are desired to maintain all processor clocks 
to be synchronized within a fixed range. For any two non-faulty processors P; and 
Pj, the following condition is satisfied. 

oi,j =lei (t)- cj (t)\ < c. for all t' 

where & < < 1. 

(3) 

Generally speaking, this condition could be fairly hard to satisfy especially in the 
case of processor or communication link failures. The proposed algorithms ensure 
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maintenance of the condition mentioned above in a probabilistic manner even in 
faulty condition, due to a random mechanism in the procedures. Actually, the 
algorithms could be controlled to keep all clocks within a fixed range at almost all 
times in a real system. 

Algorithm 1: Passive Random Distributed Algorithm (PRDA) 

As discussed in the previous section, the proposed algorithms fall in the partially 
distributed category. In the first algorithm, m out of the total N processors, which 
are chosen randomly, broadcast their clocks to all processors including themselves. 
Since m processors are chosen randomly and all processors adjust their clocks 
according to the messages from m processors, this algorithm is referred to as 
Passive Random distributed Algorithm (PRDA). Fig. 1 shows the algorithm 

loop (k=O; ;+ +k) 
select 
/****Message Transmission Phase ****/ 

clock interrupt (Ci = kTs) 
R+--- Random Number Generator 
if(R <miN) 

send (Cj to all Processors) 

/****Message Reception Phase ****/ 
receive (Cjfrom Pj) 
if (Cj is only one message from Pj) 

dj,i+--- 9 - ci 
save buffer (dj,i in P(s buffer) 

/**** Clock Adjustment Phase ****/ 
clock interrupt (Cj = kTs + T c) 
read buffer (djl,i (l=l, .. ,m') in P(s buffer) 

/** Check Legitimacy of Saved Readings **I 
for (l=l; lsm '; + +l) 

for (g=l; gSm'; ++g) 
if (g ;r l) 

djl,jg +--- djl,i - djg,i 
if (all djl,i > e) 

djl,i +--- o 

/**Adjustment for Clocks**/ 

1 
di +----~ 8.1. 

m'~ }.1 

Ci +--- kTs + Tc + di 
end select 

end loop 

Fig. 1: The Passive Random Distributed Algorithm (PRDA) Performed by · 
Processor P;. 
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executed by P; during the k-th synchronization period LkT., (k+ l)T,}, where T. is 
the synchronization period. The algorithm can be divided into three phases, 
namely, a message transmission phase, a message reception phase and a clock 
adjustment phase. First, in the message transmission phase, P;, at kT. on its own 
clock, P; decides whether it must broadcast its clock value to all processors or not. 
This procedure is realized based on random selection mechanism. That is, P; 
generates a pseudo-random number R, which is distributed uniformly from 0.0 to 
1.0 and broadcast it clock signal to all the processors if R is less than miN. The 
value m stands for the expected number of processors which can be selected to 
broadcast their clocks, and N is the total number of processors. The desired 
number of processors needed to synchronize all clocks is controlled by choosing m. 
Second, in the message reception and the adjustment phases, P;, normally receives 
all the m messages and stores the differences between the received clock times and 
C;. When C; = k T. + Tc, where Tc is set to be sufficiently large value compared to 
dmax' P; adjusts C; and the average of the stored differences. Since the number of 
received messages may be less than m when processor or link failures occur, P; uses 
m' (m' ~ m) messages which are received until the time C; = k T. + Tc. 

In order to tolerate processor failure, a legitimate received clock value must 
conform to the following conditions: 

(C1) The selected processor issues only one message in a synchronization period. 
If more than one message is received from the same sender during a 
synchronization period, these messages are discarded and the sender is 
assumed to be faulty. 

(C2) The clock difference between two non-faulty processor clocks must be within 
E. Hence, the received clock count differing from all other clock counts by 
more than E should be discarded. 

Next, it will be shown by an example how the algorithm will succeed in bringing 
all clocks closer to each other. In this example, both the transmission delay and 
clock drift which will be considered in the next section are neglected. Let N = 5, T. 
= 1 hour, Tc = 0.5 hour and m = 2. Examples of clock readings along with the 
random number R are as shown in Fig. 2a. According to the selected R in this 
example, only processors P2 and P4 will succeed in broadcasting their clocks since 
their R's are 0.2 and 0.3, respectively. P4 first transmits its clock at 1:00 to all 
processors including itself. Upon receiving this message, every processor saves the 
differences of the received clocks from its own. The same procedure is performed 
when P2 transmits it clock at 1:00. When each processor reads 1:30 on its clock, it 
calculates the average of the two readings stored in the buffer and adjusts the clock 
by adding its clock and the calculated average value as shown in Fig. 2b. For 
example, P5 first adjusts its clock to 1:26. Fig. 2c shows all the adjustment values 
computed by all the processors. In this figure, P2 through P5 , should have already 
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clock, it chooses m distinct processors randomly. After choosing m processors, Pi 

sends a message to each one of them requesting their clocks. Second, in the 
message reception and the clock adjustment phase, Pi takes the difference between 
responses and its own clock and store this value in its buffer when it receives a 
reply. At the time when Pi reads kT, + Tc, it computes the adjustment value by 
taking the average of m' (m' ~ m) saved differences and adds this value to its own 
clock. The number of received messages, m ', may be less than m if there exist some 
faulty processor or communication failures. The same legitimate check as in the 
case of PRDA is performed in order to exclude possible processor or link failures. 
Finally in the reply phase, when Pi receives a request from another processor, Pi 

must reply by sending a message containing P/s current clock. In ARDA, each 
processor chooses m distinct processors in an autonomous and random way, so that 
each clock may be adjusted by using different clocks initiated by different subset of 
processors. Hence, it would take more than one synchronization period for ARDA 
to reach convergence. 

An example showing how this algorithm works is given in Fig. 4. In this example 
both the transmission delay and clock drift are neglected as in PRDA. Let N = 5, 
T. = 1 hour, Tc = 0.5 hours and m = 2. An example of clock readings along with 
chosen processors is shown in Fig. 4a. These processors are chosen when each one 
of the processor clocks strikes 1:00, 2:00, ....... etc. Taking the processor P5 at 1:00 
for instance, P5 selects P2 and P4 , and sends requests to them in order to read their 
clocks. The requested processors P2 and P4 reply by transmitting their clocks to P

5 

which at that instant have clock readings of 0:54 and 0:58, respectively. Upon 
receiving these messages at 1:00, P5 computes the differences S2 ,5 = 0:54-1:00 = 

-0:06 and S4 ,5 = 0:58-1:00 = -0:02. At the instant when P5 clock strikes 1:30, P5 

calculates the average of the differences between the received clocks and its own 
clock which gives S5 = (-0:06-0:02)/2 = -0:04 and adjusts its clock value by that 
value. Fig. 4b shows the adjustment values computed by all processes. Fig. 4c 
shows the clock readings after the adjustment is performed. 

Analysis 

In this section, the analytical characteristics of the proposed algorithms are 
discussed. The clock difference between two arbitrary processors and its variance is 
evaluf;ited in this analysis. The convergence condition and convergence time of 
ARDA will also be derived. Before the analysis of each algorithm, general 
equations and assumptions are made in the following. 

The processor P;'s clock Cj is assumed to be expressed as a linear function of the 
reference time tk> which is shown in Fig. 5. 
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p 1 

~5,=0:06 

(o) Initial Setting 

PJ 

~53=0:00 

(b) After oil adjustment Computations 

(c) After oil adjustments 

Ps 

~5s=-o:o• 

Fig. 4: Adjustment Example m ARDA. 

The reference time tk is defined during the k-th synchronization period. The 
value /3;,k is the drift of C; against the reference time th that is, the error in a C;'s 
running rate, and .d;,k stands for the offset value of C; from tk at C; (tk) = kT,.. The 
specific definition of the reference time tk is described later for both algorithms 
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respectively. When P; reads C; (tk) = kT8 , another processor Pj reads q on its own 
clock as follows. 

(5) 

Processor Pi's Clock Ci 

(kTs, kTs) (kTs+L\t ,kTs) 

/ 
..-············/ (kTs ,kTs-(1- j3i.k) AU) 

(k+l)Ta 
Reference time, t 1c 

Fig. 5: Schematic Expression of C;. 

From equation 5 and the transmission delay from P; to Pj, the clock difference 
between G and q at the instance when Pj is aware that P; has read kT

8
, is 

represented as follows: 

(ji }• = ( 1 - f3 • k )( t. • L - t. • k) + d; }• . }. '·"' ;. . (6) 

Where d;,j stands for the time taken for a message issued by P; to arrive at Pj. 

Basically, the handling of the reference time tk and 8;,j is different between 
PRDA and ARDA. The analysis for both algorithms is explained in the following 
subsections. 

i) PRDA 

In PRDA, Pj decides whether it must send q to all processors when Pj reads kT
8

• 

As a result, m processors are selected and succeed in sending their clocks, where 
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the number m denotes the expected value of the number of successful processors. 
A receiving processor P1 takes the average of m clocks issued by the chosen m 
processors and adjusts its C1. Since the instant when the clock readings are made is 
determined by a sending processor Pj in PRDA, -dj.i in equation 6' is applied to 
obtain the clock adjustment value. 

-o,.i =Cl- f3 .. )(fl .• -ll.k)-d. 
• loh ,.,. j. ),1 

(6') 

The processor P1 adjusts its clock by adding the average of m clock differences at 
the time when C1 strikes kT. + Tc. The P;'s clock C1 ' (tk) after adjustment during 
k-th synchronization period can be expressed as follows: 

Since the reference time tk in PRDA is defined as the average clock of the 
selected m processors, the value Ii Ai.k is equal to zero. 

As result, the difference between tk and C1 measured at tk 

obtained easily as follows. 

Ai,<+l = /3;,kT. + (1- /3;,k)d; 

= f3i,kT. + d/k) 

(k + 1) T5 is 

(8) 

Where d1 is defined as Ii dj,;fm. In this equation, (1-{31,k) d1 which is represented 
as d/•J is a delay time measured by the processor P;'s clock. The expected value of 
d/•J for all processors is assumed to be zero in terms of the reference time tk. Also 
the statistical value of the clock drift, f31,k> are independent of the reference time tk. 

It can be easily seen that the variance of the clock differences between arbitrary two 
processors cr SPRDA is written as follows: 

(9) 

Where a~ and u ~ are the variances of the drift and the transmission delay, 

respectively. This equation shows that the variance of the clock differences, 

a~ I PRDA• does not depend on the initial condition and the synchronization period 
k. In a real situation, the transmission delay would dominate the synchronization 
precision attained. The value of u ~ could be small when m is chosen to be large. 
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H) ARDA 

In ARDA, when the processor P; reads kT8 , it requests randomly selected m 
processors to send their clock values. Since the instance when the clock readings 
are made is determined by a receiving processor in ARDA, 8;,i represented in 
equation 6 is used for clock adjustment value. Since the reference time tkof ARDA 
is defined as the average value of all the processor clocks in the k-th 
synchronization period, the drift of G is expressed by /3; instead of l3i,k· The P;'s 
clock G' (tk) after adjustment during k-th synchronization period can be given by 

C:Uk)- [ kT". +! ~ {(1- f3j)(lli); -llj,k) + di.J] 

= (1- f3;){tk- (kT. + ll;.k} for kTs+Tc~tk < (k+l)Ts (10) 

The difference between tk and G at tk = (k+ l)T. IS obtained easily by 
substituting (k+ l)T. into tk in equation 10 as follows: 

(11) 

According to the definition of reference time of ARDA, the expected value of 
..:l;,k is equal to zero. The expected value of delay is assumed to be zero in terms of 
the reference time tk> and {3; and ..:l;,k are assumed to be mutually independent 
variables. From equations 9 & 11, the variance of clock differences between 
arbitrary two processor clocks at (k+ l)Ts instance can be expressed recursively as: 

(12) 

The convergence condition in term of m, and converged variance can be derived as 
Equation (13) and (14), respectively 

1 + 2cr~ 
m>---c::'--

1- cr~ 
(13) 

crz / -crz/ m (14) 
o_ ARD.C o PRDA • (1- cr~ )m- (1- 2cr~) 

It is easily found that this algorithm can converge at m = 2 if u B is negligibly 
small. Normally, this condition is easily realized when a crystal clock is employed in 
each processor. In case that m is sufficiently large, equation 14 is approximately 
represented as 
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2 I 21 1 CJo_l ARD.i = () 8 PRDA • -
1
--2 
- (){J 

(15) 

This equation indicates that the converged variance in ARDA is 11(1-u~) times 
larger than that in PRDA, however, variances in both PRDA and ARDA are 
almost the same if o ~ is sufficiently smalL 

Suppose that the algorithm has converged if cr~ ••• - cr~. < Y where 'Y is 
sufficiently small number. From equation 12 the number of required synchroniza­
tion periods to reach convergence in ARDA is obtained as follows 

logy-log(a~ -a;1 ) 

k > { 1 +0 2 ()2 } + 1 
log a~+~-

(16) 

z 
In case that m > > 1 and u f3 < < 1, the above equation is approximated as 

log ai - log y 
k > 0 + 1 

log{m} 
(17) 

equation 17 means that the convergence time depends on the initial variance of 
clock differences, ai, , and the chosen number m. 

Through the analysis and qualitative nature of both algorithms, differences 
between PRDA and ARDA are clarified. One of the basic differences between 
them is the way in which clock readings are made. In PRDA, randomly selected 
processors autonomously broadcast their clocks to all processors, while in ARDA, 
a processor obtains another processor clock reading by sending a request to that 
processor. Table 1 lists the main differences between the two algorithms. 

Table 1 
Differences between PRDA and ARDA 

b.ture 
-

Property PRDA ARDA 
-

passive active 
Message Complexity (N-1) X m 2 X Nx m 
Preferred Network broadcast point-to-point 

Convergence Time one period 
log~l>0 -log')' . 

+lpenods 
logm 

Number of Selected Processors random number fixed number 
-
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SIMULATION 

The proposed algorithms have been simulated in order to investigate the effect of 
random selection on the overall performance of the system. The performance 
measure used is the synchronization error. The synchronization error is defined as 
the average absolute value of clock differences between all pairs of processors in 
the system, whose statistical values are hard to drive analytically, has been obtained 
in both algorithms. A process is created for each process in this simulation, which 
maintains the important parameters related to that processor such as clock time, 
identifier and others that are needed by the operating system for housekeeping. 
The simulation program is written in C language under UNIX 4.3 BSD operating 
system. Due to restrictions and limitations imposed by the UNIX operating system 
in dealing with processes, a small kernel to handle the creation and switching of 
processors was developed. Basically, when the time has come to execute a 
predefined procedure in each process, the process is invoked by the kernel. In this 
sense, the simulation program is categorized as an event driven type. A total of N 
processes, where N is the number of processors in the system is executed 
concurrently according to the order from the kernel. In this simulation, three 
important parameters which affect the performance of the algorithms are 
considered, namely, the number of randomly chosen processors, m, clock shift, {3;, 

and transmission delay, di,j· ThrGugh the simulation, the total number of 
processors, N, is set to be 100. 

As mentioned earlier, the proposed algorithms do not require the proc~ssors to 
be synchronized in strict sense at the initial state. The main concern here is to 
observe the transient behavior of both algorithms, that is, to see the number of 
periods needed to bring the processor clocks within the required precision. Fig. 6 & 
7 show these behaviors, where the synchronization period, T., is equal to 240 
seconds, and the initial offsets and the clock drift are distributed uniformly in the 
range of +1 s and +10 IJS/s, respectively. Fig. 6 shows the result in case that no 
communication delay exists and Fig. 7 shows the effect of delay where delay is 
distributed uniformly from 10 to 30 ms. In case of PRDA, it takes exactly one 
period to reach the presision needed, as was anticipated due to the passive nature 
of the algorithm see Fig. 6a & 7a. In Fig. 6a, a little bit of unstable behavior can be 
observed in case that m = 2 and k = 10. A possible reason is that the number of 
processors initiating a message is given by an estimated value instead of fixed 
number in PRDA. This causes the probability that no processor issues a clock value 
in some synchronization period to be relatively large if m is small, which leads 
processor clocks to drift apart. In Fig. 7a which considers the transmission delay, 
resultant synchronization errors vary roughly when m is small. This is mainly due to 
the fact that the averaging gain for the delay factor cannot be obtained if m is small. 
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On the other hand, due to the active nature of ARDA, it is easy to see from Fig. 
6b & 7b that it would take more than one period for the algorithm to reach 
convergence. It can be also observed that synchronization error would be reduced 
by choosing a larger size of m. The convergence time needed for ARDA is 
obtained both from the simulation result in Fig. 6b and the analysis in equation 17, 
which is shown in Table 2. In order to get the analytical result, -y in equation 17 is 
assumed to be 1()-'\ and all other parameters are set to be the same as those in the 
simulation case. Table 2 indicates that the simulation and analytical results show a 
fairly good coincidence. 

w' 

N=IOO N=IOO 
drifi=-10-+IOJlS, Is drift::-10-+1011-S Is 

tlclay::::O dc\ay=O 

n=~Os n=m~ 

10 

m=2 
/II =4 

m=R 

15 10 15 

Numherofrcsynchronlzutlon;k Number of resyncluonizalion ; k 

Fig. 6a: Transient Behavior in PRDA. 

Fig. 6b: Transient Behavior in ARDA. 

N=IOO 
drift,-10- +IO]is /~, 

dctay=10-30m.r 
1S,..240~¥. 

-L>- m=2 

-x- m=>4 

-o- m =R 

L---~-- -------!'n=----~';--r 
10 

N=IOO 

drift=-10-+IO]ts· /; 

delay=I0-30m.r 

Ts=240s 

IS 

Numhcrofresynduonizntion;k Numberofresynchronizatio!!; k 

Fig. 7a: Transient Behavior in PRDA. 
Fig. 7b: Transient Behavior in ARDA. 
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Table 2 
Convergence Periods (k) for Simulation and Analytical Results 

m Simulation Analysis 

2 22 19.3 

4 11 10.2 

s 7 7.1 

Fig. Sa & Sb show the synchronization error versus various synchronization 
intervals, T., in the steady state after convergence. The distribution of clock drift 
and the transmission delay are the same as in the previous case. These figures show 
that the resultant synchronization error depends on the value min both algorithms. 
It is important to notice that both algorithms perform better when the size of m is 
allowed to become larger. The reason is that the effect of the transmission delay is 
surely reduced by the averaging operation as the value of m increases. A good 
choice for m is considered to be larger than 4. According to the results in Fig. S, 
PRDA and ARDA attain approximately the same precision especially for a large 
~umber of m. Another interesting feature of the algorithms can be seen from Fig. 
9, where increasing the number of processor in system would have negligible effect 
on the synchronization error. Hence, adding new processors in the system will not 
require any modifications. 

"• 
~ 

§ 
" 

·B 
·c: 

~ 
" >-. 

01 

10 

4 

2 

10 240 

Synchronization i.ctcr;al ; Ts ( s ) 

N=100 

drift=-!O·+IO!J.s Is 
delay= 10-30111.1' 

1000 

Eig. Sa: Synchronization error vs. Synchronization interval m PRDA. 
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240 

Synchronization interval; Ts ( s ') 

N=!OO 

drift=-10-+lO!J.S' Is 

delay= 10-30 ms 

1000 

Fig. 8b: Synchronization error vs. Synchronization interval in ARDA. 

1.0[-3.----------------------------------------

L 

0 
L 
L 

w 
c 
>-, 

(/] 

----------------QI------------~-------
m=2 

----------------·---------------------
m=4 

------------~----------m--=~8--------

m=10 

delay = 1 0-30ms 
Ts = 240 s 
drift = ± 1 OJLs/s 

1.0[-4+---~---+--~----+---1----+--~----+----
10 20 30 40 50 60 70 80 90 100 

Number of Processors (N) 

Fig. 9: Synchronization error vs. Number of Processors (N). 

CONCLUSION 

Two simple practical algorithms with a random mechanism for synchronizing 
clocks have been proposed. Unlike conventional algorithms, these algorithms are 
based on a random selection of the master processors in an active or passive way. 
As a result, the proposed algorithms can reduce the number of messages exchanged 
and also avoid relatively complicated procedures to provide a high degree of fault 
tolerance. They also exhibit many desirable features like distributed control, ease 
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of implementation, fast in execution, network traffic efficiency, etc. Although both 
algorithms are similar in concept, they are different in implementation. The first 
one, called PRDA, has a passive nature where all processors receive the same m 
clocks values from randomly selected m processors in a distributed fashion. In 
ARDA, each processor request m randomly chosen processors to sent their clocks 
in an autonomus way, which shows the active nature of the algorithm. The most 
important design parameter of these algorithms is the selection of m. The size of m 
will have an affect of precision, stability and failure tolerance of the algorithm. 
Simulation results clarify the characteristics of the algorithms for various values of 
m. The result shows that m should be selected to be larger than 4. The applied area 
of the algorithms depends primarily on the nature of the network employed. 
PRDA is suitable in the broadcast network environment while ARDA is fitted to 
the point-to-point network. 
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