
Engineering Journal of Qatar University, Vol. 5, 1992, p. 145 - 162

RANDOM DISTRIBUTED ALGORITHMS
FOR CLOCK SYNCHRONIZATION

Shoichiro Nakai*, Nasser Marafih** Shingo Fukui* and Satoshi Hasegawa*
*C&C Systems Research Laboratories, NEC Corporation, Japan.

**Qatar University, Doha, Qatar.
(First Received April 1992; accepted in revised form October 1992)

ABSTRACT

This paper proposes clock synchronization algorithms based on the idea in which
randomly chosen m out of the total N processors cooperate to perform the clock
adjustment of all processors in a distributed system. Selection of m processors is
performed in a fully distributed way. Two types of algorithm which include
different random mechanisms of processor selection are described. In the first
algorithm, all processors adjust their clocks to the average of received clock signals
issued by randomly chosen m processors. In the second algorithm, each processor
chooses m processors randomly at its own will and adjust its own clock to the
average of the chosen processor clocks. Fault tolerance against processor or link
failure is taken into account in both algorithms. These algorithms exhibit desirable
features in practical sense like simplicity in implementation, a small number of
message exchanged, etc., so that the algorithms can be applied to sufficiently large
system. Transient and steady state performances of the proposed algorithms are
verified through simulation.

INTRODUCTION

Recently, clock synchronization in a loosely coupled distributed system has
received substantial attention as one of the basic operating system functions or
network control primitives. Processors cannot always keep in synchronization
without any control. In order to enable processors to maintain clocks that are
synchronized with one another at any time, periodical clock resynchronization
mechanisms are needed. The problem is more complicated if there exist some
faulty processors or communication failures. Clock sysnchronization plays an
important role in many diverse applications like computer communication,
real-time computing systems, data gathering and control and command systems.

Clock synchronization algorithms so far reported can be classified into two major
categories, namely, a master-slave algorithm and a fully distributed algorithm. In
the master-slave algorithms, all processors set their clocks to the value issued by a
master processor. The master processor is not assigned ahead of time but rather
elected (1) or agreed upon (2) according to some procedure. These procedures are
distributed in the sense that any processor can be a master provided that all
processors agree on that choice. In a fully distributed algorithms (3), all processors

145

Shoichiro Nakai, Nasser Marafih, Shingo Fukui and Satoshi Hasegawa

in the system exchange their clocks first, and then, each processor adjust its clock
by using all the exchanged clocks.

In the master-slave algorithms, any processor may be required to become a
master when a failure happens to the current master processor. In the TEMPO's
algorithm implementation (1), an election mechanism is carried out using a
time-out mechanism. The first processor whose timer expires after a failure has
occurred in the current master processor becomes a candidate for the new master.
After the candidate broadcasts an election message to all processors notifying them
of its candidacy, a new master is elected among them. An autonomous recovery
mechanism is embedded in a another algorithm (2). According to the algorithm, a
processor which has the fastest clock becomes a master in each clock synchroniza­
tion period. In these ways, the master-slave algorithms need some sort of
mechanism to recover from a specific processor failure. In addition, the time taken
to decide a winner master among contending candidates might be long, especially
in a large system.

The fully distributed algorithm (3) focuses on fault tolerance against even
malicious failures. In order to tolerrate the number off malicious processors, f + 1
rounds of message exchange are needed between all the processors to decide a new
clock value. A message contains the clock value of the sender process at the instant
of transmission. In the first round, all processors exchange their own private clocks
by sending their clock values to all processes in the system. In the f succeeding
rounds, all processors exchange other processor's clocks. These algorithms are not
practical in a large system since a large number of message exchange is needed.

The clock synchronization algorithms in this paper are designed to have two main
characteristics. First, distributed control is employed so that there is no need to
consider a specific processor's failure. Second, simplicity is required so that the
techniques apply even for large systems. That is, a practical algorithm should work
with small number of message exchanged between processors for efficiency in
utilizing communication resources. To meet the characteristics mentioned above,
algorithm based on a random mechanism are proposed, in which a random
selection of m processors out of N cooperate to adjust all clocks in the system.
These m processors are to chosen in a fully distributed manner. Since a subset of all
processors controls the adjustment of all clocks, these algorithms are referred to as
partially distributed algorithms in this paper. Two types of partially distributed
algorithms which include different random mechanisms of m processor selection
are described and their performances evaluated in the following sections.

146

Random Distributed Algorithms for Clock

PARTIALLY DISTRIBUTED ALGORITHMS

Assumptions

Consider a geographically distributed system consisting of N processors and
communication links connecting them. No restriction on the network topology is
assumed. Let the set of processors and the corresponding clock times be (Pv P2 ,

...... , Pn) and (C1 , Cb , Cn), respectively. The following two conditions are
assumed in this paper.

(Al) All clocks of non-faulty processors are assumed to be fairly accurate and run
approximately at the same rate.

1~ C;(t)-ll<p (1)

where a fixed value p represents the maximum error in a clock's running rate
against the real time t. The clocks are not necessarily synchronized at the
initial execution of the algorithms.

(A2) Some restriction on the transmission delay is needed. More specifically the
following condition is assumed if there are no failures in the system.

(2)

where d;,r is the transmission delay between P; and Pr. The interval between
two contiguous synchronization controls is assumed to be long compared with
the maximum transmission delay, d.nax·

A processor or a communication link might be faulty during synchronization
control. In fact, a faulty processor might report different clock times to different
processors and also messages might not reach their destinations due to link failures.
In this paper, the assumptions (Al) and (A2) are not always kept in the case of
processor or communication link failures. In other worcis, if (Al) and/or (A2) are
not satisfied, some kinds of failures are considered to have happened.

Algorithm Description

Algorithms for clock synchronization are desired to maintain all processor clocks
to be synchronized within a fixed range. For any two non-faulty processors P; and
Pj, the following condition is satisfied.

oi,j =lei (t)- cj (t)\ < c. for all t'

where & < < 1.

(3)

Generally speaking, this condition could be fairly hard to satisfy especially in the
case of processor or communication link failures. The proposed algorithms ensure

147

Shoichiro Nakai, Nasser Marafih, Shingo Fukui and Satoshi Hasegawa

maintenance of the condition mentioned above in a probabilistic manner even in
faulty condition, due to a random mechanism in the procedures. Actually, the
algorithms could be controlled to keep all clocks within a fixed range at almost all
times in a real system.

Algorithm 1: Passive Random Distributed Algorithm (PRDA)

As discussed in the previous section, the proposed algorithms fall in the partially
distributed category. In the first algorithm, m out of the total N processors, which
are chosen randomly, broadcast their clocks to all processors including themselves.
Since m processors are chosen randomly and all processors adjust their clocks
according to the messages from m processors, this algorithm is referred to as
Passive Random distributed Algorithm (PRDA). Fig. 1 shows the algorithm

loop (k=O; ;+ +k)
select
/****Message Transmission Phase ****/

clock interrupt (Ci = kTs)
R+--- Random Number Generator
if(R <miN)

send (Cj to all Processors)

/****Message Reception Phase ****/
receive (Cjfrom Pj)
if (Cj is only one message from Pj)

dj,i+--- 9 - ci
save buffer (dj,i in P(s buffer)

/**** Clock Adjustment Phase ****/
clock interrupt (Cj = kTs + T c)
read buffer (djl,i (l=l, .. ,m') in P(s buffer)

/** Check Legitimacy of Saved Readings **I
for (l=l; lsm '; + +l)

for (g=l; gSm'; ++g)
if (g ;r l)

djl,jg +--- djl,i - djg,i
if (all djl,i > e)

djl,i +--- o

/**Adjustment for Clocks**/

1
di +----~ 8.1.

m'~ }.1

Ci +--- kTs + Tc + di
end select

end loop

Fig. 1: The Passive Random Distributed Algorithm (PRDA) Performed by ·
Processor P;.

148

Random Distributed Algorithms for Clock

executed by P; during the k-th synchronization period LkT., (k+ l)T,}, where T. is
the synchronization period. The algorithm can be divided into three phases,
namely, a message transmission phase, a message reception phase and a clock
adjustment phase. First, in the message transmission phase, P;, at kT. on its own
clock, P; decides whether it must broadcast its clock value to all processors or not.
This procedure is realized based on random selection mechanism. That is, P;
generates a pseudo-random number R, which is distributed uniformly from 0.0 to
1.0 and broadcast it clock signal to all the processors if R is less than miN. The
value m stands for the expected number of processors which can be selected to
broadcast their clocks, and N is the total number of processors. The desired
number of processors needed to synchronize all clocks is controlled by choosing m.
Second, in the message reception and the adjustment phases, P;, normally receives
all the m messages and stores the differences between the received clock times and
C;. When C; = k T. + Tc, where Tc is set to be sufficiently large value compared to
dmax' P; adjusts C; and the average of the stored differences. Since the number of
received messages may be less than m when processor or link failures occur, P; uses
m' (m' ~ m) messages which are received until the time C; = k T. + Tc.

In order to tolerate processor failure, a legitimate received clock value must
conform to the following conditions:

(C1) The selected processor issues only one message in a synchronization period.
If more than one message is received from the same sender during a
synchronization period, these messages are discarded and the sender is
assumed to be faulty.

(C2) The clock difference between two non-faulty processor clocks must be within
E. Hence, the received clock count differing from all other clock counts by
more than E should be discarded.

Next, it will be shown by an example how the algorithm will succeed in bringing
all clocks closer to each other. In this example, both the transmission delay and
clock drift which will be considered in the next section are neglected. Let N = 5, T.
= 1 hour, Tc = 0.5 hour and m = 2. Examples of clock readings along with the
random number R are as shown in Fig. 2a. According to the selected R in this
example, only processors P2 and P4 will succeed in broadcasting their clocks since
their R's are 0.2 and 0.3, respectively. P4 first transmits its clock at 1:00 to all
processors including itself. Upon receiving this message, every processor saves the
differences of the received clocks from its own. The same procedure is performed
when P2 transmits it clock at 1:00. When each processor reads 1:30 on its clock, it
calculates the average of the two readings stored in the buffer and adjusts the clock
by adding its clock and the calculated average value as shown in Fig. 2b. For
example, P5 first adjusts its clock to 1:26. Fig. 2c shows all the adjustment values
computed by all the processors. In this figure, P2 through P5 , should have already

149

Shoichiro Nakai, Nasser Marafih, Shingo Fukui and Satoshi Hasegawa

clock, it chooses m distinct processors randomly. After choosing m processors, Pi

sends a message to each one of them requesting their clocks. Second, in the
message reception and the clock adjustment phase, Pi takes the difference between
responses and its own clock and store this value in its buffer when it receives a
reply. At the time when Pi reads kT, + Tc, it computes the adjustment value by
taking the average of m' (m' ~ m) saved differences and adds this value to its own
clock. The number of received messages, m ', may be less than m if there exist some
faulty processor or communication failures. The same legitimate check as in the
case of PRDA is performed in order to exclude possible processor or link failures.
Finally in the reply phase, when Pi receives a request from another processor, Pi

must reply by sending a message containing P/s current clock. In ARDA, each
processor chooses m distinct processors in an autonomous and random way, so that
each clock may be adjusted by using different clocks initiated by different subset of
processors. Hence, it would take more than one synchronization period for ARDA
to reach convergence.

An example showing how this algorithm works is given in Fig. 4. In this example
both the transmission delay and clock drift are neglected as in PRDA. Let N = 5,
T. = 1 hour, Tc = 0.5 hours and m = 2. An example of clock readings along with
chosen processors is shown in Fig. 4a. These processors are chosen when each one
of the processor clocks strikes 1:00, 2:00, etc. Taking the processor P5 at 1:00
for instance, P5 selects P2 and P4 , and sends requests to them in order to read their
clocks. The requested processors P2 and P4 reply by transmitting their clocks to P

5

which at that instant have clock readings of 0:54 and 0:58, respectively. Upon
receiving these messages at 1:00, P5 computes the differences S2 ,5 = 0:54-1:00 =

-0:06 and S4 ,5 = 0:58-1:00 = -0:02. At the instant when P5 clock strikes 1:30, P5

calculates the average of the differences between the received clocks and its own
clock which gives S5 = (-0:06-0:02)/2 = -0:04 and adjusts its clock value by that
value. Fig. 4b shows the adjustment values computed by all processes. Fig. 4c
shows the clock readings after the adjustment is performed.

Analysis

In this section, the analytical characteristics of the proposed algorithms are
discussed. The clock difference between two arbitrary processors and its variance is
evaluf;ited in this analysis. The convergence condition and convergence time of
ARDA will also be derived. Before the analysis of each algorithm, general
equations and assumptions are made in the following.

The processor P;'s clock Cj is assumed to be expressed as a linear function of the
reference time tk> which is shown in Fig. 5.

152

Random Distributed Algorithms for Clock

p 1

~5,=0:06

(o) Initial Setting

PJ

~53=0:00

(b) After oil adjustment Computations

(c) After oil adjustments

Ps

~5s=-o:o•

Fig. 4: Adjustment Example m ARDA.

The reference time tk is defined during the k-th synchronization period. The
value /3;,k is the drift of C; against the reference time th that is, the error in a C;'s
running rate, and .d;,k stands for the offset value of C; from tk at C; (tk) = kT,.. The
specific definition of the reference time tk is described later for both algorithms

153

Shoichiro Nakai, Nasser Marafih, Shingo Fukui and Satoshi Hasegawa

respectively. When P; reads C; (tk) = kT8 , another processor Pj reads q on its own
clock as follows.

(5)

Processor Pi's Clock Ci

(kTs, kTs) (kTs+L\t ,kTs)

/
..-············/ (kTs ,kTs-(1- j3i.k) AU)

(k+l)Ta
Reference time, t 1c

Fig. 5: Schematic Expression of C;.

From equation 5 and the transmission delay from P; to Pj, the clock difference
between G and q at the instance when Pj is aware that P; has read kT

8
, is

represented as follows:

(ji }• = (1 - f3 • k)(t. • L - t. • k) + d; }• . }. '·"' ;. . (6)

Where d;,j stands for the time taken for a message issued by P; to arrive at Pj.

Basically, the handling of the reference time tk and 8;,j is different between
PRDA and ARDA. The analysis for both algorithms is explained in the following
subsections.

i) PRDA

In PRDA, Pj decides whether it must send q to all processors when Pj reads kT
8

•

As a result, m processors are selected and succeed in sending their clocks, where

154

--- ---- -- -----------------

Random Distributed Algorithms for Clock

the number m denotes the expected value of the number of successful processors.
A receiving processor P1 takes the average of m clocks issued by the chosen m
processors and adjusts its C1. Since the instant when the clock readings are made is
determined by a sending processor Pj in PRDA, -dj.i in equation 6' is applied to
obtain the clock adjustment value.

-o,.i =Cl- f3 ..)(fl .• -ll.k)-d.
• loh ,.,. j.),1

(6')

The processor P1 adjusts its clock by adding the average of m clock differences at
the time when C1 strikes kT. + Tc. The P;'s clock C1 ' (tk) after adjustment during
k-th synchronization period can be expressed as follows:

Since the reference time tk in PRDA is defined as the average clock of the
selected m processors, the value Ii Ai.k is equal to zero.

As result, the difference between tk and C1 measured at tk

obtained easily as follows.

Ai,<+l = /3;,kT. + (1- /3;,k)d;

= f3i,kT. + d/k)

(k + 1) T5 is

(8)

Where d1 is defined as Ii dj,;fm. In this equation, (1-{31,k) d1 which is represented
as d/•J is a delay time measured by the processor P;'s clock. The expected value of
d/•J for all processors is assumed to be zero in terms of the reference time tk. Also
the statistical value of the clock drift, f31,k> are independent of the reference time tk.

It can be easily seen that the variance of the clock differences between arbitrary two
processors cr SPRDA is written as follows:

(9)

Where a~ and u ~ are the variances of the drift and the transmission delay,

respectively. This equation shows that the variance of the clock differences,

a~ I PRDA• does not depend on the initial condition and the synchronization period
k. In a real situation, the transmission delay would dominate the synchronization
precision attained. The value of u ~ could be small when m is chosen to be large.

155

Shoichiro Nakai, Nasser Marafih, Shingo Fukui and Satoshi Hasegawa

H) ARDA

In ARDA, when the processor P; reads kT8 , it requests randomly selected m
processors to send their clock values. Since the instance when the clock readings
are made is determined by a receiving processor in ARDA, 8;,i represented in
equation 6 is used for clock adjustment value. Since the reference time tkof ARDA
is defined as the average value of all the processor clocks in the k-th
synchronization period, the drift of G is expressed by /3; instead of l3i,k· The P;'s
clock G' (tk) after adjustment during k-th synchronization period can be given by

C:Uk)- [kT". +! ~ {(1- f3j)(lli); -llj,k) + di.J]

= (1- f3;){tk- (kT. + ll;.k} for kTs+Tc~tk < (k+l)Ts (10)

The difference between tk and G at tk = (k+ l)T. IS obtained easily by
substituting (k+ l)T. into tk in equation 10 as follows:

(11)

According to the definition of reference time of ARDA, the expected value of
..:l;,k is equal to zero. The expected value of delay is assumed to be zero in terms of
the reference time tk> and {3; and ..:l;,k are assumed to be mutually independent
variables. From equations 9 & 11, the variance of clock differences between
arbitrary two processor clocks at (k+ l)Ts instance can be expressed recursively as:

(12)

The convergence condition in term of m, and converged variance can be derived as
Equation (13) and (14), respectively

1 + 2cr~
m>---c::'--

1- cr~
(13)

crz / -crz/ m (14)
o_ ARD.C o PRDA • (1- cr~)m- (1- 2cr~)

It is easily found that this algorithm can converge at m = 2 if u B is negligibly
small. Normally, this condition is easily realized when a crystal clock is employed in
each processor. In case that m is sufficiently large, equation 14 is approximately
represented as

156

Random Distributed Algorithms for Clock

2 I 21 1 CJo_l ARD.i = () 8 PRDA • -
1
--2
- (){J

(15)

This equation indicates that the converged variance in ARDA is 11(1-u~) times
larger than that in PRDA, however, variances in both PRDA and ARDA are
almost the same if o ~ is sufficiently smalL

Suppose that the algorithm has converged if cr~ ••• - cr~. < Y where 'Y is
sufficiently small number. From equation 12 the number of required synchroniza­
tion periods to reach convergence in ARDA is obtained as follows

logy-log(a~ -a;1)

k > { 1 +0 2 ()2 } + 1
log a~+~-

(16)

z
In case that m > > 1 and u f3 < < 1, the above equation is approximated as

log ai - log y
k > 0 + 1

log{m}
(17)

equation 17 means that the convergence time depends on the initial variance of
clock differences, ai, , and the chosen number m.

Through the analysis and qualitative nature of both algorithms, differences
between PRDA and ARDA are clarified. One of the basic differences between
them is the way in which clock readings are made. In PRDA, randomly selected
processors autonomously broadcast their clocks to all processors, while in ARDA,
a processor obtains another processor clock reading by sending a request to that
processor. Table 1 lists the main differences between the two algorithms.

Table 1
Differences between PRDA and ARDA

b.ture
-

Property PRDA ARDA
-

passive active
Message Complexity (N-1) X m 2 X Nx m
Preferred Network broadcast point-to-point

Convergence Time one period
log~l>0 -log')' .

+lpenods
logm

Number of Selected Processors random number fixed number
-

157

Shoichiro Nakai, Nasser Marafih, Shingo Fukui and Satoshi Hasegawa

SIMULATION

The proposed algorithms have been simulated in order to investigate the effect of
random selection on the overall performance of the system. The performance
measure used is the synchronization error. The synchronization error is defined as
the average absolute value of clock differences between all pairs of processors in
the system, whose statistical values are hard to drive analytically, has been obtained
in both algorithms. A process is created for each process in this simulation, which
maintains the important parameters related to that processor such as clock time,
identifier and others that are needed by the operating system for housekeeping.
The simulation program is written in C language under UNIX 4.3 BSD operating
system. Due to restrictions and limitations imposed by the UNIX operating system
in dealing with processes, a small kernel to handle the creation and switching of
processors was developed. Basically, when the time has come to execute a
predefined procedure in each process, the process is invoked by the kernel. In this
sense, the simulation program is categorized as an event driven type. A total of N
processes, where N is the number of processors in the system is executed
concurrently according to the order from the kernel. In this simulation, three
important parameters which affect the performance of the algorithms are
considered, namely, the number of randomly chosen processors, m, clock shift, {3;,

and transmission delay, di,j· ThrGugh the simulation, the total number of
processors, N, is set to be 100.

As mentioned earlier, the proposed algorithms do not require the proc~ssors to
be synchronized in strict sense at the initial state. The main concern here is to
observe the transient behavior of both algorithms, that is, to see the number of
periods needed to bring the processor clocks within the required precision. Fig. 6 &
7 show these behaviors, where the synchronization period, T., is equal to 240
seconds, and the initial offsets and the clock drift are distributed uniformly in the
range of +1 s and +10 IJS/s, respectively. Fig. 6 shows the result in case that no
communication delay exists and Fig. 7 shows the effect of delay where delay is
distributed uniformly from 10 to 30 ms. In case of PRDA, it takes exactly one
period to reach the presision needed, as was anticipated due to the passive nature
of the algorithm see Fig. 6a & 7a. In Fig. 6a, a little bit of unstable behavior can be
observed in case that m = 2 and k = 10. A possible reason is that the number of
processors initiating a message is given by an estimated value instead of fixed
number in PRDA. This causes the probability that no processor issues a clock value
in some synchronization period to be relatively large if m is small, which leads
processor clocks to drift apart. In Fig. 7a which considers the transmission delay,
resultant synchronization errors vary roughly when m is small. This is mainly due to
the fact that the averaging gain for the delay factor cannot be obtained if m is small.

158

Random Distributed Algorithms for Clock

On the other hand, due to the active nature of ARDA, it is easy to see from Fig.
6b & 7b that it would take more than one period for the algorithm to reach
convergence. It can be also observed that synchronization error would be reduced
by choosing a larger size of m. The convergence time needed for ARDA is
obtained both from the simulation result in Fig. 6b and the analysis in equation 17,
which is shown in Table 2. In order to get the analytical result, -y in equation 17 is
assumed to be 1()-'\ and all other parameters are set to be the same as those in the
simulation case. Table 2 indicates that the simulation and analytical results show a
fairly good coincidence.

w'

N=IOO N=IOO
drifi=-10-+IOJlS, Is drift::-10-+1011-S Is

tlclay::::O dc\ay=O

n=~Os n=m~

10

m=2
/II =4

m=R

15 10 15

Numherofrcsynchronlzutlon;k Number of resyncluonizalion ; k

Fig. 6a: Transient Behavior in PRDA.

Fig. 6b: Transient Behavior in ARDA.

N=IOO
drift,-10- +IO]is /~,

dctay=10-30m.r
1S,..240~¥.

-L>- m=2

-x- m=>4

-o- m =R

L---~-- -------!'n=----~';--r
10

N=IOO

drift=-10-+IO]ts· /;

delay=I0-30m.r

Ts=240s

IS

Numhcrofresynduonizntion;k Numberofresynchronizatio!!; k

Fig. 7a: Transient Behavior in PRDA.
Fig. 7b: Transient Behavior in ARDA.

159

Shoichiro Nakai. Nasser Marafih, Shingo Fukui and Satoshi Hasegawa

Table 2
Convergence Periods (k) for Simulation and Analytical Results

m Simulation Analysis

2 22 19.3

4 11 10.2

s 7 7.1

Fig. Sa & Sb show the synchronization error versus various synchronization
intervals, T., in the steady state after convergence. The distribution of clock drift
and the transmission delay are the same as in the previous case. These figures show
that the resultant synchronization error depends on the value min both algorithms.
It is important to notice that both algorithms perform better when the size of m is
allowed to become larger. The reason is that the effect of the transmission delay is
surely reduced by the averaging operation as the value of m increases. A good
choice for m is considered to be larger than 4. According to the results in Fig. S,
PRDA and ARDA attain approximately the same precision especially for a large
~umber of m. Another interesting feature of the algorithms can be seen from Fig.
9, where increasing the number of processor in system would have negligible effect
on the synchronization error. Hence, adding new processors in the system will not
require any modifications.

"•
~

§
"

·B
·c:

~
" >-.

01

10

4

2

10 240

Synchronization i.ctcr;al ; Ts (s)

N=100

drift=-!O·+IO!J.s Is
delay= 10-30111.1'

1000

Eig. Sa: Synchronization error vs. Synchronization interval m PRDA.

160

10

m=2

m=4

m=8

10

Random Distributed Algorithms for Clock

240

Synchronization interval; Ts (s ')

N=!OO

drift=-10-+lO!J.S' Is

delay= 10-30 ms

1000

Fig. 8b: Synchronization error vs. Synchronization interval in ARDA.

1.0[-3.--

L

0
L
L

w
c
>-,

(/]

----------------QI------------~-------
m=2

----------------·---------------------
m=4

------------~----------m--=~8--------

m=10

delay = 1 0-30ms
Ts = 240 s
drift = ± 1 OJLs/s

1.0[-4+---~---+--~----+---1----+--~----+----
10 20 30 40 50 60 70 80 90 100

Number of Processors (N)

Fig. 9: Synchronization error vs. Number of Processors (N).

CONCLUSION

Two simple practical algorithms with a random mechanism for synchronizing
clocks have been proposed. Unlike conventional algorithms, these algorithms are
based on a random selection of the master processors in an active or passive way.
As a result, the proposed algorithms can reduce the number of messages exchanged
and also avoid relatively complicated procedures to provide a high degree of fault
tolerance. They also exhibit many desirable features like distributed control, ease

161

Shoichiro Nakai, Nasser Marafih, Shingo Fukui and Satoshi Hasegawa

of implementation, fast in execution, network traffic efficiency, etc. Although both
algorithms are similar in concept, they are different in implementation. The first
one, called PRDA, has a passive nature where all processors receive the same m
clocks values from randomly selected m processors in a distributed fashion. In
ARDA, each processor request m randomly chosen processors to sent their clocks
in an autonomus way, which shows the active nature of the algorithm. The most
important design parameter of these algorithms is the selection of m. The size of m
will have an affect of precision, stability and failure tolerance of the algorithm.
Simulation results clarify the characteristics of the algorithms for various values of
m. The result shows that m should be selected to be larger than 4. The applied area
of the algorithms depends primarily on the nature of the network employed.
PRDA is suitable in the broadcast network environment while ARDA is fitted to
the point-to-point network.

ACKNOWLEDGEMENT

The authors would like to thank K. Watanabe and A. Kanemasa for their helpful
suggestions and encouragement.

REFERENCES

1. Gusella, R. and Zatti, S., 1986, An Election Algorithm for a Distributed Clock
Synchronozation Program, Proceedings of the 6th International Confer­
ence on Distributed Computing System, p. 364-371.

2. Cristian, F., Aghili, H. and Strong, R., 1986, Clock Synchronization in the
Presence of Omission and Performance Faults and Processor Joins,
Proceedings of the 16the Annual International Symposium on Fault­
Tolerant Computing, p. 218-223.

3. Lamport, L. and Melliar-Smith, M., 1985, Synchronizing Clocks in the
Presence of Faults, Journal of the Association of Computing Machinery,
vol. 32, no. 1, January, p. 52-78.

162

