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ABSTRACT 

In this paper, neural networks for online solution of linear and 
nonlinear programming problems are presented. Current mode 
circuits are used in the design of networks. Transimpedance 
techniques based current conveyors are used for implementing the 
neurons. Two types of neurons are used in these networks: one being 
an integrator and the other being used as constraint. Many methods 
are suggested in this paper to implement networks weights by using 
current mode circuits such as Operational Transconductance 
Amplifiers. Network parameters are explicitly computed based upon 
problem specifications, to cause the network to converge to an 
equilibrium that represents a solution. Simulation results using 
Electronic workbench EDA version 5. Oa-1996 shows the optimization 
solutions are obtained almost in real time, acceptable if they are 
compared with theoretical values, and are stable. 

INTRODUCTION 

Artificial neural networks techniques have been applied to many areas, 
where traditional serial processing is difficult to handle, such as data 
analysis, pattern and image recognition, control function, content­
addressable memory, optimization and numerical analysis [1-5]. Neural 
networks can provide a computing model capable of exploiting the 
parallelism to solve a rich· class of optimization problems [5). The 
advantages of using a neural electronic system in applications of 
optimization is to provide a real time system and satisfying on-line solutions 
to the problems [5-7]. Moreover, many applications could be obtained from 
it in control, robotics, real-life problems, and others. Several methods have 
been proposed to implement neural networks in hardware. They can be 
classified as digital, analogue, hybrid, and optical [3,4). In this work, we 
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present a neural network that is capable of solving a large class of 
constrained and unconstrained optimization problems (both maximization 
and minimization), where the current mode circuits are used in the design 
of the proposed neurons. The overall system is based on formulating a 
dynamic gradient system. In section two the mathematical representation 
for unconstrained and constrained optimization will be introduced. 
Optimization network analysis is given in section three. The details for 
current mode implementation are presented in section four. Simulation 
results of the proposed procedure are given in section five. 

MATHEMATICAL REPRESENTATION 

Unconstrained Optimization 

Consider the general problem of minimizing a scalar cost function 
<l>(x1,x2, ....• xn) without any constraints. We seek minimization methods that 
lead to stationary points of <l>(x), that is V<l>(x*)=O. The approach for 
automatic minimization is to use gradient information in seeking for 
optimum points. Optimization in classical analogue computer was 
accomplished by implementing the following companion dynamic gradient 
system [6]: 

dxi o<t> 
c--=---

dt ax. 
I 

i=1,2, .... ,n 

Equation (1) ensures automatic minimization. The time derivative of Cl>(x) 
can be expressed as: 

d<t> = ± o<t>. dxi 

dt i=l axi dt 

It follows that: 

d<t> = .....:± c dxi 
( )

2 

dt i=I dt 
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Each c is strictly positive and {dX/dt)2 ~ 0, therefore, d<l>/dt < O.This implies 
that d<l>/dt is less than zero for all x in R" except at equilibrium points.At 
such points dX/dt =0, where it vanishes. Consequently, Cl>{x) is a Lyapunov 
function for the systems [6,7]. This ensures that the system is completely 
stable. 

Constrained Optimization 

The consideration of the constrained optimization problem is as follows: 
Minimize: <I>(X1,X2, .... ,Xn) 

Subject to inequality constraints: 

Where, j=1,2, .... ,m, and (m and n) are two independent integers. 

In this section we consider only two basic methods for solving 
constrained optimization: Kuhn-Tucker [8-10] theorem and the penalty 
multiplier theorem [6, 1 0]. 

Kuhn-tucker optimality theorem 
This section develops the Kuhn-Tucker necessary conditions for 

identifying stationary points of a nonlinear constrained problem subject to 
inequality constraints. The well-known Kuhn-Tucker conditions for solving a 
nonlinear programming problem are [9]: 

oci>( x*) m * og 0 

( x*) 
---+L:A.j J =0 

axi j=l axi 
.gj(x*) ~ 0 

Where x* is the unique solution to the problem (optimum) and 'A* is optimal 
Lagrange multiplier. A necessary condition for optimality is that 'Ai be non­
positive (nonnegative) for minimization (maximization) problems. 

225 

(4) 



AI-Naima and Hameed 

Penalty multiplier method 
To solve a constrained problem by a steepest descent scheme, we 

convert it into an equivalent problem. The way to do this is to define a 
pseudocost function \l'(x) as follows: 

'P(x) = Cl>(x) + JJ.P(x) 

Where P(x) is the penalty function, and ,... is the penalty multiplier as follows: 

(5) 

(6) 

U(.) represents the unit step function. 

Now, applying a dynamic gradient approach to equation (5), we can 
obtain the following set of differential equations: 

Where c is strictly positive. 

OPTIMIZATION NETWORK ANALYSIS 

Hopfield first constructed the analogue circuit architectures for neural 
optimization network [11]. Kennedy and Chua further extended Hopfield's 
model for the optimum solution ensuring the stability condition [7]. Maa and 
Shan blatt gave a complete analysis of this model [1 0]. The extended 
equation of the Kennedy and Chua model is 

. 

(7) 

x= -V<t>{x)-ijVgj{x) (8) 

i' ~ { ~, {x )R 
if g i {x) > 0 

if g i {x) :S; 0 
(9) 
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Where R is the gain of the nonlinearity. 

Equation (8) actually fulfills both the Kuhn-Tucker conditions and the 
penalty function method. It can be seen that equation (4) and equation (7) 
are the same as equation (8), since ii = A.i = 1-1U(-gi) gi. Equation (8) is a 
Lyapunov function and is a completely stable ensuring the network 
converges to a stable equilibrium point without oscillation. 

The Treatment of Equality Constraints 

The problem is to minimize a cost function <I>(x1,X2, .... ,Xn) 
Subject to: 

j=1, .... ,m 

and 

k=1, .... ,r 

Let the cost function be in the following quadratic form 

<P(xl'x2, .... ,xn) = .!..[x ra X]+ aT X 
2 

and the constraints: 
gj(X1,X2, .... ,Xn)=Bx-e2:: 0 

(10) 

(11) 

(12) 

Where a and x are (n-vectors), g and e are( m-vectors), hand fare (r­
vectors), B and D are (mxn), (rxn) matrices respectively and Q is (nxn) 
symmetric positive definite-matrix. We modify equation (12) by stipulating 
mutually exclusive terms for hk 2::0 and hk~O [12). That is 

(13) 

This modification makes the networks to deal with equality and inequality 
constraints. 
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The Maximization Model 

Consider the problem of minimizing a scalar cost function. The search 
may be in the gradient direction or opposite direction (8]. So equation (1) 
can be applied for maximization, if the negative sign is replaced by positive 
sign. The gradient method with a positive sign was called a steepest ascent 
method. Now we write the improved equation models i.e. a maximization 
model as follows: 

• 
x=V<D(x) (14) 

• 
x=V<D(x)-ij Vgj(x) (15) 

Where, equation (14) solves maximization problems without any 
constraints and equation (15) can be applied for maximization problems 
with bound constraints. 

The Network Formulation 

Equation (8) can solve both constrained and unconstrained nonlinear 
programming problems. Figure 1 shows the simplified diagram of equation 
(8). This figure can be applied to solve constrained optimization problems 
with equality and inequality (minimization and maximization). There are two 
types of neurons used in this network: one type being an integrator, and the 
other type being used as constraint qualifier. Figure 1 is valid for 
unconstrained problems if the constraint blocks disappeared. The integrator 
in this figure is continuously operated until the energy function is minimized, 
so through the feedback terminal x still changing and the energy function 
decreasing. When (dx/dt ---+0) the energy function is minimum and xis a 
target. The connection patterns between neurons can be realized as 
resistive connection and the entire matrix corresponds to conductance 
value. So the weight value equals the inverse of resistance value. There 
are different methods suggested to implement these weights [3]. We try to 
implement these weights by using current mode techniques. 
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• 
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Fig. 1. A simplified diagram for a constrained optimization 

CURRENT MODE IMPLEMENTATION 

Current Mode circuits 

In these circuits the current rather than the voltage is used as the active 
variable. The current mode signal processing circuits have recently 
demonstrated many advantages over their voltage mode counterparts 
including increased bandwidth, higher dynamic range, and better suitability 
for operation in reduced supply environments. In addition, the current mode 
processing often leads to simpler circuitry and lower power consumption 
(3,4, 13, 14). 

The Current Conveyor 

The current conveyor is essentially a voltage/current mode hybrid circuit. 
It is a four terminal device which when arranged with other electronic 
elements in specific circuit configurations can perform many useful 
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analogue signal processing functions [13). Current conveyors can be 
classified into three types: first, second and third generation current 
conveyors respectively designated symbolically as CCI, CCII, and CCIII 
respectively [13,15]. These conveyors ideally can be described using the 
following matrix relation: 

[
iy] [o a o][vy] 
~x = J 0 0 ix 

lz 0 b 0 Vz 

(16) 

b characterizes their current transfer from x to z. Forb positive, the 
circuit is a positive transfer conveyor. This becomes a conveyor with a 
negative transfer when b is a negative. For a=1, the circuit is CCI. If a=O, 
then the circuit is CCII. With a=-1 the circuit is CCIII. Figure 2 shows the 
ideal model of CCII. In 1991 commercial current conveyor (either positive 
current conveyor AD844 and cascade negative current conveyor AD844S) 
chips were manufactured by Analogue Devices, which show a good 
performance over a large bandwidth of frequency range [16]. The models of 
non-ideal second-generation current conveyors are shown in Figure 3 [16]. 

The Design of Networks 

The problem is to design a network of Figure 1 using current conveyor 
components. This network consists of two types of neurons: constraint and 
integrator. Both neurons were designed by using a Transimpedance circuit 
based on commercial current conveyors (AD844 and AD844S). A 
Transimpedance circuit has a low input -low output impedance [17]. 

Figure 4 shows the nonlinear constraint model. These conveyors are 
operating as a Transresistance circuits. The input current will be fed into x1 
and then it will be transferred to z1, during this transferring the phase of 
current is inverted through the current controlled-current source CCCS. 
The current passes through Rz1, R and Ry2. The voltage across 
(Rz1//R//Ry2) is Vy2. and through voltage controlled-voltage source VCVS of 
the second current conveyor, the voltage passes to x2 terminal. The 
controlled voltage of VCVS is Vy2, and Vx2 is the source. A switch is 
connected with the output of the second CCII to perform the constraints 
nonlinearity. The controlled and input voltage of a switch is the same and is 
Vx2. The controlled voltage of the switch is connected with the 
negative terminal to pass only signals having a negative polarity to achieve 
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Fig. 2. models of ideal second generation current conveyor 
{a) CCII {b) -CCII 

R -
v With 

Rz = 3MO, Rx = 500, 
Rv = 1 OMO and Cz = 4.5pF 

(a) 

X 

.Y~ 
Vv1_R, 

With 
Rz = 3MO. Rx = 500, 

Rv = 1 OMO and Cz = 4.5pF 
(b) 

Fig. 3. Models of non-ideal current conveyors 
{a) CCII {b) -CCII 
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" i/p x, v ccn z, 
Y1 1 

_.__ 

-

I 
"----''---tx2 ccn 

r---.-----~y2 2 

1764kQ -

'Fig.4. A constraint neuron 

equation (17). The ground connector was connected with a positive 
terminal of controlled voltage of a switch, to make the turnoff voltage of a 
switch at zero volts. Thus, the function of switch is to perform a constraint 
nonlinearity. The output voltage of a switch is: 

if i X] ~ 0 

if i X] < 0 

Let R= 1764 Mn, :. Rz1//R//Ry2 = 1M.Q 

(17) 

The equivalent resistance is 1 Mn; which is a good value when tested in 
simulation and it gives good results. 

Figure 4 is valid if a constraint equation is in the Bx-e>O form. If a 
constraint is in the form g(x)= Bx-e<O , the switching scheme must be 
modified in Figure 4. There are two ways to accomplish g (x)=-Bx+e>O: 

1) By achieving the same equation and connect with output of a constraint 
neuron an inverter circuit. 

2) By connecting -CCII instead of CCII numbered 1 and replacing the 
switching scheme. 
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Note in case of inequality constraints, we need one constraint neuron for 
every constraint equation. In case of equality constraint, we use two 
neurons as stated earlier, the first operates as g (x) >0 and the second 
operates as g (x)<O. 

Figure 5 shows an integrator neuron. This circuit operates as a 
Transcapacitance circuit. The current feeds to X1 and then transfers with 
inverting the phase to z1, and then passing through the capacitor. The 
voltage from x2 is the integration of the input current through X1, which by 
neglecting the parasitic resistance (10MQ//3Mn) becomes 

v =- ~ f J(t)dt (18) 

The function of integrator neuron is to accomplish equation (1) i.e. 

dv. "" C -' = -~Currents 
dt 

(19) 

The output voltage of integrator neuron is the variable of the optimization 
problem. The quantity of integrator neuron depends on the number of 
variables on the optimization problems. For example, if the number of 
variables is three, then the number of the neurons are three i.e. six current 
conveyors. 

I orp 
~ ..... 

i/p '---- x2 ccn ..... X1 Z2 
~ ccn Z1 

c±10nF 
Y2 2 

Y1 1 

-'------- '---- -

Fig. 5. An integrator neuron 

233 



AI-Naima and Hameed 

The low output impedance of the second current conveyor of both 
neurons makes this chip work as a voltage buffer. The voltage buffer 
appears to be one of the most useful building blocks in analogue 
electronics. High performance voltage buffers are needed in applications of 
current conveyor to achieve the desired final parameters in the design. In 
addition, it is suitable for driving heavy load. 

Suggestions of Weights Implementation 

As stated before, we presented how the connection patterns were 
directly implemented using resistive elements depending on the value of 
problem parameters. The resistive elements tend to be nonlinear and 
occupy too much area to make practical VLSI implementations (7]. Many 
methods were proposed by using analogue, digital, or both techniques. In 
this section we present the current- mode implementation to these weights 
by using an Operational Transconductance Amplifier OTA. An OTA circuit 
is one of the current-mode circuits, it has five terminals as follows: inverting 
voltage v·, non-inverting voltage v+, output current 10 , biasing current, and 
ground terminals. It is a voltage controlled-current source VCCS. The OTA 
circuits use the MOS transistor characteristic equations to produce an 
output current that is proportional to the difference of two voltages. The 
output current can be described as follow [13,14], see Figure 6: 

(20) 

v-

Fig. 6. An OTA symbol 
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Where gm is a transconductance gain which depends on a bias current and 
the inner circuit parameter. The weight value is the same gm value. 

The neural network employing Transconductors offers several 
advantages as follows: 

1) Increased dynamic range of the signals when the MOS transistors are 
operated from the weak inversion all the way to strong inversion. 

2) Increased frequency range of operation due to the use of the low­
impedance internal nodes minimizing the capacitance charging and 
discharging. 

3) With this type of weights, we can obtain negative valued weights as we 
described depending on equation (20). 

4) It has high input impedance. 

5) It can control the value of the weights by using a floating gate transistor 
with the OTA circuit [18] or by using external resistance [19] or by 
controlling the value of bias current [3]. 

6) In reference [20], there is a technique, which implements multiple input 
OT A circuit; they modeled each weight connection with only two 
MOSFET transistors. 

SIMULATION EXAMPLES 

Example 1. [7] 

Minimize 

<D(xl' X2 , xJ = 0.4x1 + _!_(5x~ + 8x~ + 4x~)- 3X 1X2 - 3x 2X3 
2 

Subject to 

gi(xi,xz,x3)=xi +Xz +x3 ~1 

g 2,3,4 (xbx 2 ,x3) = x 1 ~ 0, x 2 ~ 0, x 3 ~ 0 
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In this example, we expect to understand the performance of proposed 
neurons for quadratic programming problem, see Figure 7. This problem 
was described by Kennedy and Chua [7]. 

-B e 

Fig. 7. Network formulation of quadratic problems 
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To map this circuit we find V<l>(x) as follows: 

From this information we can find [Q] and [a] as follows: 

[ 

5 - 3 0] 
Q = -3 8 -3 

0 -3 4 [

0 .4] 
a = 0 

0 

We find [B) and [e) directly from constraint equation. [BT] is the 
transposed of [B), but for nonlinear constraints we must evaluate Vg. 

Vector [e) and [a] are connected with fixed voltage source, which is 
taken as 1V. Seven neurons are used in this example, three for integrators 
and four for constraint amplifiers. The results of this example are shown in 
Table 1. See Figure 8 to further understand the transient response for 
different outputs in OP-AMP and Practical CC. In this figure the current 
conveyor reaches the optimum value (steady state) at time interval smaller 
than OP-AMP and the accuracy for CC is better than OP-AMP due to the 
properties of current-mode circuit. Figure 9 illustrates the error graph of 
each output. Note these errors in Figure 9 are determined as (theoretical 
value- simulated value). 
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Table 1 Results of Example 5.1 

Theoretical OP-AMP 
Values (Kennedy and 

Chua model) 

x1 0.252 0.2615 

x2 0.3328 0.3309 

x3 0.415 0.3985 

%Error of X1 - 3.77 

%Error of x2 - 0.571 

%Error of X3 - 3.976 

% Avg. error - 2.772 

Total analysis 
- 56 time in seconds 

Example 2. [8] 

Minimize 

<l>(x) = xt + x; 

Subject to 

g1(x) = x 1x 2 > 8 

g2,3 (x) = x 1 > O,x2 > 0 

Ideal 
Current 

Conveyor 

0.2507 

0.3323 

0.4133 

0.516 

0.1502 

0.4096 

0.3586 

1.2 

To map this problem we find V<t> and Vg as follows: 

V<l>(x) = [4xi] 
2x 2 r

X 
2 

X J 1 
, and V g(x) = ~ ~ 
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Current 
Conveyor 
(Qractical) 

0.2498 

0.3314 

0.4122 

0.873 

0.4207 

0.6747 

0.6561 
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Fig. 8. Transient response for different outputs for example 5.1 
(a) OP-AMP (b) CC 
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0.5 

0.25 
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-0.5+--------,---------r--------r-------~------~ 
0 4e-005 8e-005 0.00012 0.00016 0.0002 

Tune (s) 
a 
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b 

Fig .9. Error curves for examples 5.1 (a) OP-AMP (b) CC 
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By applying the principle that was stated in Figure 1, we connect two 
multipliers to obtain x3, and two multiplier to achieve ( i . Vg) block, and one 
multiplier to produce the first constraint (g1). To map the constrained 
elements in both constraint and integrator neurons, first, we find BT from Vg 
and B from constraint equations (g2 & g3). Finally we connect the three 
multiplier (i1x1, i1x2 and -x1x2) to accomplish constraint number g1 as shown 
in Figure 10. The results of this example are shown in Table 2. 

10 

•W 
1.25 

Fig. 10. The mapping of example 5.2 
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Table 2 Results of Example 5.2 

Theoretical OP-AMP Ideal Current 
Values Current Conveyor 

Conveyor (practical) 

x, 1.7818 1.787 1.779 1.778 

X2 4.4898 4.447 4.472 4.469 

%Error ofx, - 0.2918 0.1571 0.2133 

%Error of x2 - 0.9533 0.3965 0.4633 

% Avg. error - 0.6225 0.2768 0.3383 

Total analysis 28.25 1 1.25 time in seconds -

CONCLUSION 

From the point of view of energy function, we can map the nonlinear 
programming problem onto the current mode circuits, and successfully 
simulate the on-line performance. The proposed neurons exhibit the 
modularity as well as simple analogue processor. The current conveyor 
component were tested and showed good performance (both ideal and 
non-ideal commercial current conveyor type AD844). A transimpedance 
technique was used in designing of the proposed neurons 
(Transcapacitance for integrator neuron and Transresistance technique for 
constrained neuron which are based on current conveyor components). 
With these proposition we can obtain good results and small total absolute 
relative error with gain in simulation time. The suggested weights have 
good properties such as producing negative weights, programmability, 
using MOS transistor techniques and others. All these properties are 
regarded good advantages in VLSI implementation. 

The proposed networks are valid for both linear and nonlinear 
programming problems, constrained and unconstrained, quadratic or higher 
degree optimization. 

It is shown that the equilibrium of the network is asymptotically stable 
and approximating the optimum of cost function (minimum or maximum). 
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