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ABSTRACT 

This paper introduces an improved three dimensional finite-element (30-FE) 
computational approach for magnetostatic field problems using unconstrained 
magnetic vector potential (MVP) formulation in conjunction with hexahedral 
type elements. It was found that the use of first order or second order hexahedral 
type element in the FE formulation eliminates the sensitivity of the FE 
computational results to grid geometries and elemental shape ill-conditioning 
associated with first order tetrahedral type elements. The method is shown to be 
computationally economical and is highly recommended for large scale global 
type 3D magnetostatic field computations in electrical devices. 

INTRODUCTION 

A review of literature reveals that the use of vector potential formulation for 
the computation of three dimensional (3D) magnetostatic fields by finite elements 
(FE) have been associated with the enforcement of the divergence of the MVP, 
A, to zero (1,2). Such constraint was applied due to concerns about the impact 

of the unconstrained (V · A ) on the uniqueness of the computed values of the 
MVP. Later investigations concluded that under usual conditions assumed in a 
3D-FE computation, it is_ not necessary to specify v. A in order to uniquely 
define the vector potential A (3). 

Wang and Demerdash (4) found that the first order FE method works quite 
well in conjunction with the unconstrained MVP formulations in the 
computations of 3D magnetostatic fields in single medium applications. Yet the 
method failed to give satisfactory results in the mixed-media (air-iron) 
applications because of the substantial sensitivity of the results to grid 
geometries and consequent elemental shape ill-conditioning. Such unconstrained 

123 



M.A. Alhamadi 

MVP formulation was based on the first order tetrahedral finite elements. In 
addition, the authors found that the use of higher order, such as second order, 
tetrahedral elements yields results which are almost insensitive to grid geome­
tries and associated elemental shape ill-conditioning. 

In this work, the effort was made to evaluate the element properties based on 
elemental shape function specifications and on the order of integration (5). It is 
demonstrated here that the use of the unconstrained MVP formulation in 
conjunction with either first or higher order hexahedral FE appears to 
thoroughly alleviate sensitivities of the computational results to grid geometries 
and possible effects of numerical ill-conditioning. Although a hexahedron has 
more complex types of shape functions than a simple tetrahedron, it is 
demonstrated that the use of hexahedral elements in the FE formulation reduces 
the very large numbers of simultaneous equations generated by the tetrahedral 
based FE formulation. Accordingly, this approach possesses substantial savings 
in the computer CPU time and storage over a second order tetrahedral FE 
approach. The method was applied to a demonstration example, namely a 1.5 
kVA shell-type laminated iron core transformer, the geometry of which is given 
in Figure (1). 

Fig. 1. One octant of a 1.5 kV A transformer 

THE UNCONSTRAINED MVP METHOD 

The MVP-FE formulation is based on the solution of the curl-curl partial 

differential equation which governs the MVP, A ,or a given set of boundary 
conditions. That is, 

Vx(u·VxA)=J (1) 
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-
where u is the tensor of anisotropic reluctivity of the medium, and J is the 
distributed source current density vector. 

The corresponding energy functional to be minimized in the FE formulation 
is as follows (6): 

(2) 

where V is the global solution volume. 

In order to minimize the functional of equation (2), the associated solution 
region is subdivided into hexahedral elements. Hence, equation (2) can be 
expressed by a summation of volume integrations in every element as follows: 

(3) 

where NE is the total number of elements in a given FE grid. The functional 
F(A) is minimized by setting its derivatives with respect to the three directional 
components of MVP at each node to zero. That is: 

aF aF aF 
--=0, --=0, --=0, for i=l,2, ... ,NN 
aAix aAiy aAiz 

(4) 

where NN is the total number of elements in a given FE grid. These differential 
equations are taken for every hexahedral element and yield a set of elemental 
equations. This paper next introduces the elemental equations based on a first 
order hexahedron and on a second order hexahedron as basic building blocks in 
the FE grid descritization. 

The Hexahedral Finite FJement Formulotion: 

The magnetic vector potential, A , within an element can be expressed by the 
following interpolation polynomial: 

nn nn 

A= LNkAk=LNk(Akxix+Akyay+Akzaz) (5) 

k=l k=l 
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where, nn is the number of nodes in a hexahedral element, and is equal to 8 for 
a first order element or equal to 20 for a second order element, whereas Nk is 

the shape function associated with the k-th node of the element, and Ak is the 
nodal vector potential at the k-th node. The element equations can be written in a 
general matrix form as follows: 

(6) 

where, ~e is the elemental stiffness matrix with a size of (3nn x 3nn) and can be 

defined for the ik-th entry as follows: 

J c3Ni0Nkd v---v f aN.ONk f aN-ONk v. Y fJz fJz 
J aN.aNk 

- v -•--dv - v -•--dv 
+ v -•--dv v. z fJy Ox v. y fJz Ox 

v. z fJy fJy 

J c3Nic3Nkd J aN.aNk 
v---v -J v aNi fJNk dv ~ilc = - v -·--dv v. x fJz fJz (7) 

v. z Ox fJy f aN.ONk Vo X Oz fJy 
+ v - 1 --dv 

v. z Ox Ox 

f aNiONkd 
J aN.aNk J aN.aNk 

v---v 
v. y Ox Ox 

- v - 1 --dv - v - 1 --dv J aN.aNk v. y Ox fJz y 0 X 0y Oz + v -•--dv 
Vo X fJy 0y 

Meanwhile, Ae is a column vector which contains the unknown nodal compo­

nents of the elemental MVPs with a size of (3nn x 1). The i-th entry of this col­
umn vector is given by: 

(8) 

Also, !e is the elemental forcing function column vector with a size of (3nn x 

1). The i-th entry of this column vector is defined by: 

(9) 

The various terms in equations (7) and (9) are discussed further in the appendix. 
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APPLICATION EXAMPLE AND RESULTS 

The 3D-FE method based on the unconstrained MVP formulation was used in 
the magnetic field computation of one octant of a 1.5 kV A shell-type 
transformer, Figure (1). The field was computed at low excitation current of 
0.25A to ensure no saturation in the laminated core. This was done in order to 
avoid the effect of saturation on the results of various solution methods in the 
comparison at hand. The 3D field computation was carried out using first order 
hexahedral FE. Two corresponding FE grids are shown in Figure (2). Notice 
that the two nodes A and Band their associated grid lines are shifted in grid #1 
from their correspondings in grid #2. The computational results of the associated 
stored energy and magnetizing ipductance are given in Table (1). Notice that the 
magnetizing inductance values obtained for the two FE grids reveal stable and 
insignificant change in the solution with respect to the change in the FE grid. 
The results of this approach were compared with computational results based on 
first order tetrahedral FE grid discretization for both grids #1 and #2, see Table 
(1). Comparison between the two approaches reveals that the hexahedral based 
FE solutions are less sensitive to grid changes and the computed magnetizing 
inductance is much closer to the measured value than the corresponding solutions 
obtained from the tetrahedral based FE. Furthermore, Figure (3) demonstrates 
the advantage of using first order hexahedral based FE over the use of first order 
tetrahedral based FE by comparing the adequate number of nodal equations re­
quired by each approach to achieve the desired accuracy of the results. 

Grid #1 Grid #2 

Fig. 2. First order hexahedral FE grids 
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Fig. 3. Comparison on accuracy of 1st order results 

Table 1. First Order 3D-FE Results (I = 0.25 A) 

Grid Type of # # Un- Energy Inductance 
Element Elements knowns mJ H 

#1 Hex a. 880 2200 2.7581 0.709433 

#2 Hex a. 880 2200 2.7527 0.711098 

#1 Tetra. 5280 2200 2.5689 0.655471 

#2 Tetra. 5280 2200 2.5661 0.662821 

Measured Value of Inductance: 0.737 H 

Next, the 3D field computation was carried out using second order 
hexahedral FE for two grid discretizations, Figure (4). The results of this 
approach were compared with computational results based on corresponding 
second order tetrahedral FE grid discretizations, see Table (2). The effect of grid 
alteration on the sensitivity of the computed results in both approaches is 
insignificant. Also, the magnetizing inductance values calculated in both ap­
proaches are very close to the measured value. However, one may notice the 
substantial reduction in the computer storage and CPU time by the hexahedral 
based FE method. Such savings in the computer storage and CPU time could be 
immense in large-scale magnetostatic field computations with the involvement of 
iterative process due to nonlinear magnetic saturation. 
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Grid #1 Grid #2 

Fig. 4. Second order hexahedral FE grids 

Table 2. Second Order 30-FE Results (I = 0.25 A) 

Grid Type of # Ele- # Un- Energy Inductance CPU Time 
Element ments knowns mJ H min. 

#1 Hexa. 336 3341 2.9052 0.740933 89 

#2 Hexa. 336 3341 2.8912 0.740504 81 

#1 Tetra. 1440 5045 2.8604 0.727081 108 

#2 Tetra. 1440 5045 2.8565 0.725173 110 

Measured Value oflnductance: 0. 737 H 

CONCLUSIONS 

An improved 30-FE computational approach for magnetostatic field problems 
using unconstrained MVP formulation in conjunction with hexahedral type 
elements has been presented. It was found that the use of first or second order 
hexahedral elements in the FE formulation yields stable and insensitive results to 
grid geometries and elemental shape ill-conditioning associated with first order 
tetrahedral elements. The method is also computationally economical in 
comparison to unconstrained MVP method with higher order tetrahedral type FE 
which may place severe limitations on the use of the method in practice. This is 
due to the excessive number of elemental equations to be used to achieve a given 

129 



M.A. Alhamadi 

degree of accuracy. In addition, the division of a space volume into individual 
tetrahedra presents difficulties of visualization and could easily lead to errors in 
nodal connections. 
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APPENDIX 

Interpolation functions of first order hexahedron (7): 

8 

u= LNk(a,J3,y)uk 
k=l 

in which, 

where a, (3, yare local coordinates of a right hexahedron. 

Interpolation functions of second order hexahedron: 

20 

u= LNk(a,J3,y)uk 
k=l 

in which, 

N k (a,j3,y) =118(1 +a.a.k)(1 +!3!3~c)(l +r r k) 

x(a.ak +J313k +YYk -2) 

N ~c(a,j3,y)=1/4(1-a 2)(1+1313k)(l+yyk) 

N 1c ( a.,f3, r )=1/4(1-132 Xl +a. a ~cXl +r r k) 

Nk (a.,J3,y)=ll4(1-y 2X1+a.a.~cX1+!3J3~c) 

k = 1, ... ,8 

k = 9,11,17,19 

k = 10,12,18,20 

k = 13,14,15,16 

Coordinate transformation and numerical integration: 

(10) 

(11) 

(12) 

(13) 

The numerical integrations in equations (7) and (9) can be expressed in the local 
coordinates, and can be numerically solved using a third order Gaussian 
quadrature algorithm as follows: 

(14) 
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where Wi, Wj, Wk are the weighting factors and ai, f3j, 'Yk are the stations of 
the third order Gaussian quadrature 

j, k, I Wi, Wj, Wk ai, f3j, 'Yk 

1 519 -_Ill_ts 
2 8/9 0 

3 5/9 ~5 
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