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ABSTRACT

This study is concerned with the problem of unsteady interphase diffusion for
multicomponent dilute solutions. An integral technique, based on an
approximate boundary-layer approach is used. Results are in good agreement
with the exact solution available for the particular case of binary mixtures.

NOMENCLATURE

Concentration of component k in phase I
Concentration of component k in phase II
Diffusion coefficient of component k in phase I

Diffusion coefficient of component k in phase II
Approximate concentration profile

Superscript denoting interfacial conditions
Subscript denoting component number

Distribution coefficient of component k

Molar flux of component k

Superscript denoting initial conditions

Time

Rectangular coordinate

Boundary layer thickness for the concentration profile
Dimensionless z-coordinate
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INTRODUCTION

The problem of mass transfer of one single substance, present in small
quantities, between two immiscible solvents was investigated previously by
Marshall et al. (1947), and Scott et al. (1951). A presentation of the problem,
including the governing equations, was made by Bird et al. (1960). The
method of solution used by previous investigators was an exact one. The
coupling between the governing equations was solved by the Laplace transform
technique.

In our present analysis, we generalize the treatment and consider mass
transfer of n components between two immiscible solvents I and II. We make
the assumption that all n components are present in small quantities. In contrast
with the technique of solution previously used by other investigators, we
propose an approximate solution based on a boundary-layer approach.

GOVERNING EQUATIONS

Figure 1 depicts the system of concern. Solvents I and II are assumed to
be of infinite dimensions. The two immiscible solvents are separated by an
interface located at z=0.
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Figure 1: Concentration profile for component k.

56
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Transfer of mass involves small quantities and therefore movement of the
interface with time is not significant and may be neglected. In addition, the
assumption of dilute solutions allows use of Fick's second law (Bird et al.,
1960). Therefore the concentration of component k in both phases satisfies the
following equations.
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forz <0 i

% CkII =D 62 CkII

31 a2 forz >0 )

In the above expressions, C and D represent concentrations and diffusion
coefficients respectively. In addition, subscripts I and II allow distinction
between the two phases. Because of the assumption of dilute solutions,
diffusion coefficients in mixtures may be assumed constant, and equal to binary
diffusion coefficients.

For simplicity, we assume the initial concentrations in both phases to be

independent of spatial positions:

at t=0, C,; =C;, for z<0 3)

at t=0, Cy; =Cyy; for z>0 C)]

Superscript o is used in equations (3) and (4), to represent initial conditions, in
conformity with the notations used by Bird et al. (1960).
Four boundary conditions are needed to solve the problem. Far from the
interface, each phase does not feel the presence of the other phase, which
means the concentrations remain unchanged at z= +c :

at z=-o0 CkI = CEI (5)
at z=+w C, =C}, ©6)
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At the interface, we assume that equilibrium conditions are satisfied for all
components present in both phases:

at z=0 i = my, Cy Q)

In the above formula, m represents distribution coefficients, and superscript i is used to
identify interfacial values.

In our analysis, we assume ideality, and therefore, distribution coefficients are assumed
independent of compositions.

At the interface, there is no accumulation of mass, which means there is continuity of
molar fluxes:

oC oC
H'—"_Dkll kIT
oz oz

at z=0, -Dy ®

In our approximate boundary-layer approach, the following approximate
concentrations profiles are used.

C:;l :glzl — fkl( ; ] for: _6kI <z<0 )]
kI kI e 3

C,=C for: z< -8, (10)

Cor=Ciy _ fku[i) for: 0<z<8,, (1)

Ciar — G é‘)kII

Cir = Cin for: z>8,, (12)
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INTEGRAL FORM OF THE GOVERNING EQUATIONS

Integrating equation (1) with respect to z from z=-8,; to z=0, while
using Leibnitz formula, along with equation (10), we get

4
dt

f represents approximate concentration profiles, and symbol & is used to
represent boundary-layer thicknesses.

0
jcu dz |- L co =D.d(ac'd (o,o—%(—sﬂ,t)) (13)
dt oz oz

_akl

Using the following notation

equation (13) may be written, after simplification, in the following form

. 1 £ .
(oo [ ds, |- 2 [df“ (- (o)}(cal -Cy) a9

a 8y LSy dgy

In the same way, we get for phase II, after integration of equation (2) between

z=0and z=38;

d( o dd,y; o oC oC
a( oCkH dz)— d:H Car= Dkn(ﬁ(skmt)_ a;H (O’t)) (5)
Introducing
z
G = 5

kIL
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we can write equation (15) as follows

d i ) !
a[(ckll - kII)SkIIJ.kaI deII] =
0

Dyy | dfin dfyy i o
1)- 0){\Cr—C 16
8y |:d§kII( ) deH( ) ( kI kH) (16)

In addition, it is clear from initial conditions (3) and (4), that boundary layer
thicknesses are initially equal to zero:

at t=0 =0 | (17)
at t=0 8,,=0 (18)

Finally, equation (8) may be written as

C,, -C:, df, Ci, —Cpy df,
D kI k1 _kI_(O) - _ KIT )30 Bl 414 (O) (19)
B w o 4Gy s kI dc
SOLUTION

Concentration profiles are to be taken of the form

fkl(gkl) =a,+3a,¢g,; ta, C.:il (20)

Imposing boundary condition (10) and continuity of the first derivative,
concentration profiles are shown to be

fulcw) =(1-¢y)’ @1)
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The above approximate profile was mentioned by Bird et al. (1960), and used
in the analysis of unsteady evaporation of a one- component liquid into a
multicomponent vapor mixture.

Using equation (21) and substituting for concentration into equation (14) gives

d i o D 3 i [
d—[(CkI _Ckl)akl]: —i(ckl _CkI) (22)
tht W

For phase II, we also use

fkn(‘;kn) = (1 - ng)Z (23)
In the same way, we get

d i o D i )

d_t[(CkH - CkII) 8kH] = 66_m(ckn - CkH) (24)

kI

At this stage, we make the assumption that interfacial concentrations are
independent of time. This assumption will be justified later.

Integrating equations (22) and (24) with respect to time, and using initial
conditions (17) and (18) yields

8, =12D, t 25)
Oy = /12 Dyyp t (26)

Using equations (21) and (23), we write equation (19) as follows

i o
CkI — CkI
1 o
CkII - CkII

J— DkH _6£_ (27)
1 6kH

Combining the above expression with equations (7), (25) and (26) yields
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It is clear from expressions (28) and (29)

28)

29

, that interfacial concentrations are independent of time, which justifies our

previous assumption.

It is easy to prove that molar fluxes at the interface are

o 0
m, C,, -C,; |Dy

D 3t
m, + |—L
kIi

Nk,app. (07 t) =

For single-component solutions, the exact value is

o 0
m, C, -C,; |Dy

D Tt
m, +\/—£
DkII

Nk,exact (0’ t) =

Comparing equations (30) and (31), we clearly see that the relative error is less

than 2.5%.

(30)
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CONCLUSIONS AND RECOMMENDATIONS

Results obtained by an approximate boundary--layer approach proved to
be accurate in predicting mass transfer rates, when compared with the exact
solution for dilute binary solutions.

Approximate techniques are powerful techniques, and it is recommended
to extend the analysis to the case of interphase diffusion for concentrated
solutions.
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