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ABSTRACT 

This study is concerned with the problem of unsteady interphase diffusion for 
multicomponent dilute solutions. An integral technique, based on an 
approximate boundary-layer approach is used. Results are in good agreement 
with the exact solution available for the particular case of binary mixtures. 

NOMENCLATURE 

Ckr Concentration of component k in phase I 

Cklr Concentration of component k in phase II 

Dkr Diffusion coefficient of component k in phase I 

Dklr Diffusion coefficient of component k in phase II 
f Approximate concentration profile 
i Superscript denoting interfacial conditions 
k Subscript denoting component number 

mk Distribution coefficient of component k 

Nk Molar flux of component k 

o Superscript denoting initial conditions 
t Time 
z Rectangular coordinate 
8 Boundary layer thickness for the concentration profile 
c; Dimensionless z-coordinate 
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INTRODUCTION 

The problem of mass transfer of one single substance, present in small 
quantities, between two immiscible solvents was investigated previously by 
Marshall et al. (1947), and Scott et al. (1951). A presentation of the problem, 
including the governing equations, was made by Bird et al. (1960). The 
method of solution used by previous investigators was an exact one. The 
coupling between the governing equations was solved by the Laplace transform 

technique. 

In our present analysis, we generalize the treatment and consider mass 
transfer of n components between two immiscible solvents I and II. We make 
the assumption that all n components are present in small quantities. In contrast 
with the technique of solution previously used by other investigators, we 
propose an approximate solution based on a boundary-layer approach. 

GOVERNING EQUATIONS 

Figure 1 depicts the system of concern. Solvents I and II are assumed to 
be of infinite dimensions. The two immiscible solvents are separated by an 
interface located at z=O. 

z 

Figure 1: Concentration profile for component k. 

56 
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Transfer of mass involves small quantities and therefore movement of the 
interface with time is not significant and may be neglected. In addition, the 
assumption of dilute solutions allows use of Pick's second law (Bird et al., 
1960). Therefore the concentration of component kin both phases satisfies the 
following equations. 

for z < 0 (1) 

for z > 0 (2) 

In the above expressions, C and D represent concentrations and diffusion 
coefficients respective! y. In addition, subscripts I and II allow distinction 
between the two phases. Because of the assumption of dilute solutions, 
diffusion coefficients in mixtures may be assumed constant, and equal to binary 
diffusion coefficients. 

For simplicity, we assume the initial concentrations in both phases to be 
independent of spatial positions: 

at t=O, Ckr = C~r for z<O (3) 

at t=O, Ckn = qn for z>O (4) 

Superscript o is used in equations (3) and (4), to represent initial conditions, in 
conformity with the notations used by Bird et al. (1960). 
Four boundary conditions are needed to solve the problem. Far from the 
interface, each phase does not feel the presence of the other phase, which 
means the concentrations remain unchanged at z = ±oo : 

at z=-oo ckl = ql 

at z= +oo ckll = c~ll 
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At the interface, we assume that equilibrium conditions are satisfied for all 
components present in both phases: 

at z=O (7) 

In the above formula, m represents distribution coefficients, and superscript i is used to 
identify interfacial values. 

In our analysis, we assume ideality, and therefore, distribution coefficients are assumed 
independent of compositions. 
At the interface, there is no accumulation of mass, whicb. means there is continuity of 
molar fluxes: 

at z=O, (8) 

In our approximate boundary-layer approach, the following approximate 
concentrations profiles are used. 

ckl -q, =f. (-z J 
Cl co kl 8 
kl-kl -kl 

for: -ok1 < z < o (9) 

for: z < -okl (10) 

for: 0 < z < okii (11) 

for: z > okll (12) 
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INTEGRAL FORM OF THE GOVERNING EQUATIONS 

Integrating equation (1) with respect to z from z= -okl to z=O, while 
using Leibnitz formula, along with equation (10), we get 

_!(J~ dzJ- dokl co = D ( o<\r (O t)- ackr (-8 t)) 
dt _5; 1 dt kr ki oz ' oz kl• (13) 

f represents approximate concentration profiles, and symbol () is used to 
represent boundary-layer thicknesses. 

Using the following notation 

z 
<;kl =--

-6 ki 

equation (13) may be written, after simplification, in the following form 

_![(ci -co )o Jl£ d J = Dkr [ dfkl (I)- dfkr (o)J(c. -co ) (14) 
dt kl kl kl kl <;kl s;: d d kl kl 

o 0 kr <;kr <;kl 

In the same way, we get for phase II, after integration of equation (2) between 

z=O and z=okn 

d (JokD d ) dokn 0 (ackn (s:: ) ackn (O )) - Cku z ---Ckn = Dku -- ukn• t --- 't 
dt 0 dt 8z az (15) 

Introducing 
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we can write equation (15) as follows 

In addition, it is clear from initial conditions (3) and (4), that boundary layer 
thicknesses are initially equal to zero: 

at t=O (17) 

at t=O (18) 

Finally, equation (8) may be written as 

D C~1 - C~ dfkr (O) = _ D C~u - C~u dfku (o) 
kl d kll s;: 

() kl <; ki u kll de; kll 
(19) 

SOLUTION 

Concentration profiles are to be taken of the form 

(20) 

Imposing boundary condition (10) and continuity of the first derivative, 
concentration profiles are shown to be 

(21) 
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The above approximate profile was mentioned by Bird et. al. (1960), and used 
in the analysis of unsteady evaporation of a one- component liquid into a 
multicomponent vapor mixture. 

Using equation (21) and substituting for concentration into equation (14) gives 

~[(c -co ) 6 ] = 6 Dkr (ci -co ) dt kl kl kl 6 ki ki 
kl 

(22) 

For phase II, we also use 

(23) 

In the same way, we get 

(24) 

At this stage, we make the assumption that interfacial concentrations are 
independent of time. This assumption will be justified later. 

Integrating equations (22) and (24) with respect to time, and using initial 
conditions (17) and (18) yields 

(25) 

(26) 

Using equations (21) and (23), we write equation (19) as follows 

c~n - c~u 
(27) 

Combining the above expression with equations (7), (25) and (26) yields 
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(28) 

Co JEkl co kll + -- ki 

C:0,= i' 1 Dkl 1 
+ Dkll mk 

(29) 

It is clear from expressions (28) and (29) 
, that interfacial concentrations are independent of time, which justifies our 
previous assumption. 

It is easy to prove that molar fluxes at the interface are 

(30) 

For single-component solutions, the exact value is 

N (o ) ~ m, c;:, -C~, ~D" 
k,exact 't ~ 1t t 

m + __~g_ 
k 

Dkn 

(31) 

Comparing equations (30) and (31), we clearly see that the relative error is less 
than 2.5%. 
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CONCLUSIONS AND RECOMMENDATIONS 

Results obtained by an approximate boundary--layer approach proved to 
be accurate in predicting mass transfer rates, when compared with the exact 
solution for dilute binary solutions. 

Approximate techniques are powerful techniques, and it is recommended 
to extend the analysis to the case of interphase diffusion for concentrated 
solutions. 
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