
Engineering Journal of the University of Qatar, Vol. 12, 1999, PP. 75-89

OPTIMUM CUTTING SCHEDULE OF REINFORCING
STEEL BARS

Ahmed B. Senouci and Aly N. El-Bahrawy
Department of Civil Engineering,
Qatar University, Doha, QATAR

ABSTRACT

Reinforcing steel bars are generally procured in standard lengths. The cutting of
standard steel bars to the specified lengths usually yields an appreciable amount
of steel waste. Minimization of steel waste problem is of interest because
reinforced concrete structures are currently in extensive use. The generated steel
waste depends directly upon the selected cutting schedule. A dynamic
programming method is presented for the selection of cutting schedules of
minimum steel waste. Two examples are presented to illustrate the
computational process of the method and to compare its results with those
obtained by El-Bahrawy (1995).

INTRODUCTION

Reinforcing steel bars are fabricated to a standard length (often 12 meters), bundled,
and shipped to construction sites. They are then cut to the required lengths as specified
by the project requirement. The cutting process of standard steel bars (i.e., with
standard lengths) usually yields an appreciable amount of steel waste which may
represent a significant extra cost. The generated amount of steel waste depends directly
upon the selected cutting schedule. The development of a computerized method for the
selection of cutting schedules that minimize steel waste is definitely needed in order to
reduce construction costs.

El-Bahrawy (1995) proposed a computerized method to minimize the cutting steel
waste of reinforcing steel bars in the construction industry. The method is divided in
two steps, namely the combination step and the optimal choice step. In the first step a
heuristic approach is developed to generate sufficient number of feasible combinations

75

Senouci and El-Bahrawy

that is not exhaustive, while the second step finds the optimal number of repeated
combinations to satisfy the requirements list. In the latter step a linear programming
model is developed where the system variables are the number of times each
combination has to be repeated, and the objective function is the summation of the
waste lengths resulting from the chosen combinations. The proposed method presents
two main shortcomings, the first is that the heuristic approach does not guarantee the
generation of all feasible cutting combinations, while the second is that the linear
programming model used does not guarantee an integer solution.

The present paper uses a dynamic programming approach to minimize the cutting
waste length of reinforcing steel bars. Two examples are presented to illustrate the
computational process of the method and to compare its results with those obtained by
El-Bahrawy (1995).

PROBLEM FORMULATION

The project requirement is usually given in the form of a table that specifies, for
each bar diameter and length, the number of requested bar sections. The solution to a
cutting problem consists of answering the following two questions (El-Bahrawy
1995): 1) How to cut a standard steel bar into smaller pieces to form a combination of
different section lengths?, and 2) how many combinations should be used to satisfy the
numbers requested from each bar section? The cutting problem can, therefore, be
divided into two separate tasks. The first one determines all of the feasible cutting
combinations for a standard steel bar. The second one computes the number of times
each feasible cutting combination is to be repeated in order to satisfy the project
requirement.

For example, the project requirement, for a specific bar diameter may consist of 40
bar sections with a length of 2.2 meters and 10 bar sections with a length of 5 meters.
In Task One, two feasible cutting combinations can be selected, the first one yields 5
bar sections with a length of 2.2 meters and a waste length of 1 meter, and the second
combination yields 3 bar sections with a length of2.2 meters, 1 bar section with a
length of 5 meters, and a waste length of 0.4 meter. In order to satisfy the project
requirement using the selected combinations, the first cutting combination is repeated
2 times while the second combination is repeated 10 times. The total steel waste
length is equal to 6 meters.

76

OPTIMUM CUTTING SCHEDULE OF REINFORCING STEEL BARS

DYNAMIC PROGRAMMING SOLUTION

The theory of dynamic programming is a powerful optimization technique based on
implicit enumeration (Aris 1974, Denardo 1982, and Bertsekas 1987). The method
deals effectively with problems that have a sequential type structure. It splits the
problem into a sequence of stages in which lower-dimension optimization takes place.
The basic dynamic programming principle includes the following steps:

1. Divide the whole problem into a family of problems of the same nature
2. Tie the optimal solutions of these problems through a recurrence equation

(objective function).

The computational process is performed in two passes: a forward pass and a
backward pass. In the forward pass, local optimizations (i.e., at each stage) are
determined. In the backward pass, the global optimization (i.e., for the whole
problem) is determined.

The dynamic programming solutions for the two tasks (i.e., the feasible cutting
combinations and the optimal number of cutting combinations) are described in the
following sections.

Task One: Feasible Cutting Combinations

Task One is concerned with the determination of all feasible cutting combinations
for a standard steel bar. Figure 1 presents a flowchart of the dynamic programming
procedure in Task One.

Forward procedure
The forward procedure is designed to find all optimal and sub-optimal solutions at
each stage for each of the associated states. A stage (i) represents the bar section
length (i), where i=l,NSection. NSection represents the number of bar section
lengths requested. A state (i,j) associated with a stage (i) represents the number of
bar sections of length (i) that are selected, where j=O, ,Nbars(i). Nbars (i) represents
the maximum number of bar sections oflength (i) that can be cut from a standard steel
bar.

77

Senouci and El-Bahrawy

j = I, ... ,NBars(l)

CumulativeLength = XLength(s,t,l) + j*BarSectionLength(i)

Store values oft and I for tracing back
the overall solution during backward pas

Fig. 1. Task one flowchart

78

y

OPTIMUM CUTTING SCHEDULE OF REINFORCING STEEL BARS

To be able to define all optimal and sub-optimal solutions for each stage, it is
necessary to introduce a steel length function. Let Mi represent the number of optimal
and sub-optimal solutions at state (i,j). Let XLength(i ,j ,k) denote the k1

h value of the
steel length function at state (ij), where i=1, ,NSection, j= 0, ,Nbars(i), and k
=1,2, ... ,Mi.

The cumulative steel lengths XLength(i,j;k) are determined by considering every
preceding state (s,t) associated with the preceding stage (s) that yields a cumulative
steel length less or equal to the standard bar length (i.e. 12 meters). The cumulative
steel length associated with the current state (i,j) is given by the following recurrent
equation:

XLength(i, j, k) = XLength(s, t, 1) + j * BarSectionLength(i) [1]

where XLength(s,t,/) is the f' cumulative steel length at the state (s,t) and
BarSectionLength(i) is the section length (i).

The dynamic programming procedure begins with an evaluation of the cumulative
steel lengths at the first stage (i.e., the first bar section length):

XLength(l,j,l) = j * BarSectionLength(l) . [2]

Then, the recurrent equation (Eq. 1) is applied for the states associated with the
remaining stages. The state variable (t) as well as the variant(/) of the cumulative
steel length Xlength(s,t,l) are stored for tracing back the optimum solution during the
backward optimization procedure.

When the steel lengths are computed for the states associated with the last stage,
the corresponding steel waste lengths are computed by subtracting the actual steel
lengths from the standard length (i.e., 12 meters).

Backward procedure
After solving all of the local optimizations for the last stage (i.e., computing all of

the steel waste lengths for the states associated with the last stage), the current state
variable (i) as well as the variant (k) of cumulative steel length that yielded the
minimum steel waste are selected. Then, starting from the last stage and tracing
backward, the predecessor's state variable (s) and cumulative steel length variant (I)

79

Senouci and EI-Bahrawy

that led to this minimum steel waste are identified. This process of examining and
selecting the predecessor's state variable and cumulative steel waste variant
propagates backwards until the first stage is reached.

Task Two: Optimal Number of Cutting Combinations
Task Two computes the number of times each feasible cutting combination has to

be repeated in order to satisfy the project requirement. Figure 2 presents a flowchart
of the dynamic programming procedure in Task Two.

Forward Procedure
In the dynamic programming .formulation, a stage (i) represents a standard steel bar.

A state (ij), which is associated with stage (i), represents the selected cutting
combination (j) determined in Task One.

The objective of the procedure is designed to find all optimal and sub-optimal
solutions at each stage for each of the possible states. In order to achieve this
objective two arrays are used: cumulative waste length Waste and cumulative number
of bar section length TSL.

Cumulative Waste Length Array:
The array stores the cumulative waste lengths generated at every state associated

with each stage. The k1
h cumulative waste length for state (i,j) is denoted Waste(i,j,k).

In this expression, i = 1, , N ;j = 1, , Ncomb; k=l, , M(ij); where Ncomb is
the total number of feasible cutting combinations; and M(i,j) is the number of optimal
and sub-optimal solutions at state (i,j).

The cumulative waste lengths Waste(i,j,k) are determined by considering every
state (s,t) associated with the preceding stage (s). The k1

h cumulative waste length
associated with the current state (ij) is given by the following recurrent equation:

Waste(i,j,k) = Waste(s, t,l) + WastePerCutComb(j) [3]

where Waste(s,t,l) is the fh cumulative Waste length at the state (s,t) and
WastePerCutComb(j) is the steel waste generated by the cutting combination U).

80

OPTIMUM CUTTING SCHEDULE OF REINFORCING STEEL BARS

Preceding state (t = I)

Preceding variant of cumulative waste (I = 1)

Compute cumulative nwnbers of bar sections
(Eq. 5)

Compute cumulative waste for the state j
associated with stage i (Eq. 3).

Fig. 2. Task two flowchart

81

N

Senouci and El-Bahrawy

The dynamic programming procedure begins with evaluating of the cumulative
steel waste lengths at the first stage (i.e., the first standard length steel bar):

Wast(i,j,l) = WastePerCutComb(j) [4]

Then, the recurrent equation (Eq. 3) is applied for the states associated with the
remaining stages. It should be noted that the state variable (t) and the variant (f) of
steel waste are stored for tracing back the optimum solution during the backward
optimization procedure.

The computational process is continued until the requested number of bar sections
1s reached. Thus, it is necessary to keep track of the cumulative number of bar
sections.

Cumulative Number of Bar Sections:
The array stores the cumulative number of bar sections. TSL(i,j,k,n) denotes the

cumulative number of bar section length n associated with the cumul~tive waste length
Waste(i,j,k).

The cumulative number of bar section lengths TSL(i,j,k,n) are computed using the
following equation:

TSL(i, j, k, n) = TSL(s, t, 1, n) + NurnSectionPerCutComb(j, n) [5]

where TSL(s,t,/,n) is the cumulative number of bar section length and
NumSectionPerCutComb(j,n) is the number of bar sections length (n) that are
generated by the cutting combination (j).

The cumulative number of section lengths at the first stage is obtained using the
following equation:

TSL(i,j,k,n) = NumSectionPerCutComb(j,n) [6]

Backward Procedure
This procedure is similar to the one performed in Task One.

82

OPTIMUM CUTTING SCHEDULE OF REINFORCING STEEL BARS

ILLUSTRATIVE EXAMPLE 1

The following example is used to illustrate the details of the dynamic programming
solution. The requirement list, for a specific steel bar diameter, consists of 6 bar
sections with a length of 2.5 meters, 5 bar sections with a length of 4.3 meters, and 3
bar sections with a length of 5 meters.

Task One: Combinations of Section Lengths
Five states are associated with the first stage while three states are associated with

the second and third stage (Figure 3). The forward procedure starts by calculating the
cumulative steel lengths for the first stage. The cumulative steel length for the first
state is equal to zero. The cumulative steel length for the second state, which is equal
to 2.5, is computed using Eq. 2. The computation process is continued in the same
manner for the remaining states associated with stage I. Then, the cumulative steel
lengths for the states associated with stage 2 are computed using Eq. I. The preceding
state variable (s) as well as the variant (f) of cumulative steel length are stored for
tracing back the overall solution during the backward pass. The cumulative steel
lengths for the states associated with the third stage are computed in a manner similar
to the one used for the states associated with the second stage. Table I summarizes the
computation results for the first, second, and third stages.

Stales Stales Stales

4

3

2 2 2

Stage

Section Length 2." 4.1 5.0
(Ill)

Fig. 3. Stages and associated states for task one

83

Senouci and El-Bahrawy

Table 1. Computation results for task one of example 1

Current Stage Preceding Stage Current Stage
Steel Bar Steel Cum. Cum. Optimum Preceding

Stage State Length Section Stage State Length Steel Steel Length
No. No. Variable Length No. Variable Variable Length Length State Variable

i j k (m) s t I (m) (m) t I

I . I I 0.0 ----- ----- ----- ----- 0.0 ----- -----
2 I 2.5 ----- ----- ----- ----- 2.5 ----- -----
3 I 5.0 ----- ----- ----- ----- 5.0 ----- -----
4 I 7.5 ----- ----- ----- ----- 7.5 ----- -----
5 I 10.0 ----- ----- ----- ----- 10.0 ----- -----

2 I I 00 I I I 0.0 00 I I
I 2 0.0 I 2 I 2.5 2.5 2 I
I 3 0.0 I 3 I 5.0 5.0 3 I
I 4 0.0 I 4 I 7.5 7.5 4 I
I 5 0.0 I 5 I 10.0 10.0 5 I
2 I 4.3 I I I 0.0 4.3 I I
2 2 4.3 I 2 I 2.5 6.8 2 I
2 3 4.3 I 3 I 5.0 9.3 3 I
2 4 4.3 I 4 I 7.5 11.8 4 I
3 I 8.6 I I I 0.0 8.6 I I
3 2 8.6 I 2 I 2.5 Ill 2 I

3 I I 0 2 I I 0.0 0.0 I I
I 2 0 2 I 2 2.5 2.5 I 2
I 3 0 2 I 3 5.0 5.0 I 3
I 4 0 2 I 4 7.5 7.5 I 4

I 5 0 2 I 5 10.0 10.0 1 ~
I 6 0 2 2 I 4.3 4.3 2 I
I 7 0 2 2 2 6.8 6.8 2 2

I 8 0 2 2 3 9.3 9.3 l J.
I 9 0 2 2 4 Il.8 11.8 l 1..
I 10 0 2 3 I 8.6 8.6 3 I

I 11 0 2 3 2 Ill 11.1 3 2
2 I 5 2 I I 0.0 5.0 I I
2 2 5 2 I 2 2.5 7.5 I 2

2 3 5 2 I 3 5.0 10.0 1 J.
2 4 5 2 2 I 4.3 8.3 2 I

2 5 5 2 2 2 6.8 11.8 2 2
3 I 10 2 I I 0.0 5.0 I I
3 2 10 2 I 2 2.5 7.5 I 2

3 3 10 2 I 3 5.0 10.0 1 J.
3 4 10 2 2 I 4.3 8.3 2 I
3 5 10 2 2 2 6.8 11.8 1.. 1..

84

OPTIMUM CUTTING SCHEDULE OF REINFORCING STEEL BARS

When the cumulative steel lengths are computed for all the states associated with
the last stage, the corresponding steel waste lengths are computed by substracting the
cumulative steel lengths from the standard length (i.e., 12 meters).

The backward procedure starts with the selection of the state variable (i) as well as the
variant (k) of cumulative steel length that yielded the minimum steel waste at the last
stage. Then, starting from the last stage and tracing backwards, the predecessor's state
variable (s) and cumulative steel length variant (l) that led to this minimum steel waste
are identified. This process of examining and selecting the predecessor's state
variable and cumulative steel waste variant propagates backwards until the first stage
is reached. Table 2 summarizes the feasible cutting combinations.

Task Two: Optimal Number of Cutting Combinations
In Task Two, all of the feasible combinations listed in Table 2 must be considered

in the computation procedure in order to guarantee an optimum solution. However,
the first two combinations are found, by inspection, to yield the optimum solution.
Therefore, only these two combinations are considered herein in order to simplify the
computational procedure.

As shown in Figure 4, two states are associated with each stage. The states
represent the cutting combinations while the stages represent the standard steel bars.
The forward procedure starts by calculating the cumulative steel waste lengths for the
first stage. The cumulative waste and cumulative number of bar sections for the states
associated with the first stage are computed using Eqs. 4 and 6, respectively. On the
other hand, the cumulative waste and cumulative number of bar sections for the states
associated with the second and· third stages are computed using Eqs. 3 and 5,
respectively. The preceding state variable (s) as well as the variant (I) are stored for
tracing back the optimum solution in the backward procedure. Table 3 summarizes the
computation results for the first, second, and third stages.

In the backward procedure, the state variable as well as the variant of cumulative
steel waste that yielded the minimum steel waste are selected. Then, starting from the
last stage and tracing backwards, the predecessor's state variable and cumulative waste
variant that led to this minimum steel waste are identified. This process of examining
and selecting the predecessor's state variable and cumulative steel waste variant
propagates backwards until the first stage is reached. Table 4 summarizes the optimal
cutting combinations obtained in Task Two.

85

Senouci and El-Bahrawy

Table 2. Feasible cutting combinations for task one of example 1

Combination Steel Steel Waste Number of Bar Sections
Number Length Length No.I No.2 No.3

_1m~ (m) _12.5ml _14.3 m) J5ml
1 11.8 0.2 1 1 1
2 11.8 0.2 3 1 0
3 11.8 0.9 1 2 0
4 10.0 2.0 0 0 2
5 10.0 2.0 2 0 I
6 10.0 2.0 4 0 0
7 9.3 2.7 2 I 0
8 9.3 2.7 0 1 1
9 8.6 3.4 0 2 0

States States States States States

2 2 2 2 2

1

Stages
(Steel Bar No.) 2 3 4 5

Fig. 4. Stages and associated sates for task two

86

Current Stage
Steel Number of Sections

Stage State Waste No.I No.2
No. No. Var (2.5 m) (4.3 m)

i k
l l l l l

2 I 3 l
2 l I l l

l 2 l l
2 l 3 l
2 2 3 l

3 l l l l

I I l l
I I l l
l l l l

2 l 3 l
2 2 3 l

~
2 3 3 l
2 4 3 l

Table 3. Computation results for task two of example 1

Preceding Stage Current Stage
Waste Steel Number of Sections Waste Cum. Number of Sections Ootimum Precedimz.

No.3 Per Stage State Waste No.I No.2 No.3 Per Steel No.I No.2 No.3 Waste
(5 m) Comb. No. Var. Var. (2.5 m) (4.3 m) (5 m) Comb. Waste (2.5 m) (4.3 m) (5m) State Variable

m s t I (m) (m) t I
l 0.2 ----- ----- ----- ----- ----- ----- ----- ----- l l l ----- -----
0 0.2 ----- ----·· ----- ----- ----- ----- ----- ----- 3 l 0 ----- -----
l 0.2 I l l l l I 0.2 0.2 2 2 2 l l
l 0.2 l 2 l 3 l 0 0.2 0.2 4 2 l 2 l
0 0.2 l l l l l l 0.2 0.2 4 2 l l l
0 0.2 l 2 l 3 l 0 0.2 0.2 6 2 0 2 l
l 0.2 2 l l l l I 0.2 0.4 3 3 3 l l

l 0.2 2 l 2 l l l 0.2 0.4 ff. J.. 1.. L 1..
l 0.2 2 2 l 3 l 0 0.2 0.4 7 3 l 2 l
l 0.2 2 2 2 3 l 0 0.2 0.4 9 3 0 2 2

0 0.2 2 I I l l l 0.2 0.4 ff. J.. 1.. L L
0 0.2 2 I 2 l l l 0.2 0.4 7 3 l l 2
0 0.2 2 2 l 3 l 0 0.2 0.4 7 3 l 2 l
0 0.2 2 2 2 3 l 0 0.2 0.4 9 3 0 2 2

Cum.
Steel

Waste
(m)
0.2
0.2
0.4
0.4
0.4
0.4
0.6

0.6
0.6
0.6

0.6
0.6
0.6
0.6

0
~
~

~
("")

~
2
~
00
n ;;
~

~
0
~

~
~
~
2
~
00

;d
~
~

~
00

Senouci and El-Bahrawy

Table 4. Optimal number of cutting combinations (Task two of example 1)

Number of Cutting Combinations Number of Sections Total Waste

#1 #2 2.5m 4.3m 5.0m (m)

2 1 5 3 2 0.6

ILLUSTRATIVE EXAMPLE 2

The following example, which was reported by El-Bahrawy (1995), is given to
compare the results of the dynamic programming solution with those of the linear
programming.

A construction project requires, for a specific steel bar size, 50 bar sections with a
length of 8.2 meters, 20 bar sections with a length of 5.3 meters, 30 bar sections with a
length of 4.2 meters, and 60 bar sections with a length of2.1 meters.

The first step in the dynamic programming solution of the problem is the
enumeration of the feasible cutting combinations. Table 5 summarizes these cutting
combinations. The second step is the determination of the optimal number of cutting
combinations. Table 6 summarizes the solution found~

The final solution obtained is the same as the linear programming solution.
However, the dynamic programming solution provides two optimal combinations
instead of one. This additional combination gives the engineer an opportunity to
choose between two optimal solutions.

Table 5. feasible cutting combination for task one of example 2

Combination Combinations Waste Length
Number (m)

1 2 * 5.30 1.4
2 2.10+2*4.20 1.5
3 2.10 + 1 * 8.20 1.7
4 8.2 3.8
5 5.3 + 3 * 2.1 0.4
6 4.2 + 2.1 * 3 1.5
7 5 * 2.1 1.5
8 5.3 + 4.2 + 2.1 0.4

88

OPTIMUM CUTTING SCHEDULE OF REINFORCING STEEL BARS

Table 6. Optimal number of cutting combinations (Task two of example 2)

Solution Number of Cutting Combinations Number of Sections Total Waste
Number #1 #2 #3 #4 2.1 m 4.2m 5.3 m 8.2m (m)

1 10 15 46 4 61 30 20 50 132
2 10 15 45 5 60 30 20 50 132

CONCLUSIONS

The present offers a dynamic programming solution to the problem of optimal
cutting schedule of reinforcing steel bars. The solution is divided into two tasks. The
first one (Task One) finds the feasible cutting combination while the second one (Task
Two) finds the optimal number of cutting combinations. Two illustrative examples
were given to demonstate the details of the dynamic programming solution and to
compare the results with the linear programming solution presented by El-Bahrawy
(1995). The proposed solution finds all possible optimum cutting combinations. The
disadvantage, however, is the difficulty in solving large size problems. With the
availability of more powerful computers, the latter problem can be easily overcome.

REFERENCES

1. Aris, R .. (1974). Discrete Dynamic Programming: an introduction to the
optimization of staged processes. Blaisdell Publication Corporation, New York.

2. Bertsekas, D. P. (1987). Dynamic Programming: deterministic and stochastic
models, Englewood Cliffs, New Jersey, USA.

3. Denardo, E. V. (1982). Dynamic Programming: models and applications,
Englewood Cliffs, New Jersey.

4. El-Bahrawy, A. N. (1995). An algorithm to minimize unused lengths of steel bars
and sections. Engineering Journal of University of Qatar, Vol. 8, pp.185-196.

89

