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ABSTRACT 

Reinforcing steel bars are generally procured in standard lengths. The cutting of 
standard steel bars to the specified lengths usually yields an appreciable amount 
of steel waste. Minimization of steel waste problem is of interest because 
reinforced concrete structures are currently in extensive use. The generated steel 
waste depends directly upon the selected cutting schedule. A dynamic 
programming method is presented for the selection of cutting schedules of 
minimum steel waste. Two examples are presented to illustrate the 
computational process of the method and to compare its results with those 
obtained by El-Bahrawy (1995). 

INTRODUCTION 

Reinforcing steel bars are fabricated to a standard length (often 12 meters), bundled, 
and shipped to construction sites. They are then cut to the required lengths as specified 
by the project requirement. The cutting process of standard steel bars (i.e., with 
standard lengths) usually yields an appreciable amount of steel waste which may 
represent a significant extra cost. The generated amount of steel waste depends directly 
upon the selected cutting schedule. The development of a computerized method for the 
selection of cutting schedules that minimize steel waste is definitely needed in order to 
reduce construction costs. 

El-Bahrawy (1995) proposed a computerized method to minimize the cutting steel 
waste of reinforcing steel bars in the construction industry. The method is divided in 
two steps, namely the combination step and the optimal choice step. In the first step a 
heuristic approach is developed to generate sufficient number of feasible combinations 
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that is not exhaustive, while the second step finds the optimal number of repeated 
combinations to satisfy the requirements list. In the latter step a linear programming 
model is developed where the system variables are the number of times each 
combination has to be repeated, and the objective function is the summation of the 
waste lengths resulting from the chosen combinations. The proposed method presents 
two main shortcomings, the first is that the heuristic approach does not guarantee the 
generation of all feasible cutting combinations, while the second is that the linear 
programming model used does not guarantee an integer solution. 

The present paper uses a dynamic programming approach to minimize the cutting 
waste length of reinforcing steel bars. Two examples are presented to illustrate the 
computational process of the method and to compare its results with those obtained by 
El-Bahrawy (1995). 

PROBLEM FORMULATION 

The project requirement is usually given in the form of a table that specifies, for 
each bar diameter and length, the number of requested bar sections. The solution to a 
cutting problem consists of answering the following two questions (El-Bahrawy 
1995): 1) How to cut a standard steel bar into smaller pieces to form a combination of 
different section lengths?, and 2) how many combinations should be used to satisfy the 
numbers requested from each bar section? The cutting problem can, therefore, be 
divided into two separate tasks. The first one determines all of the feasible cutting 
combinations for a standard steel bar. The second one computes the number of times 
each feasible cutting combination is to be repeated in order to satisfy the project 
requirement. 

For example, the project requirement, for a specific bar diameter may consist of 40 
bar sections with a length of 2.2 meters and 10 bar sections with a length of 5 meters. 
In Task One, two feasible cutting combinations can be selected, the first one yields 5 
bar sections with a length of 2.2 meters and a waste length of 1 meter, and the second 
combination yields 3 bar sections with a length of2.2 meters, 1 bar section with a 
length of 5 meters, and a waste length of 0.4 meter. In order to satisfy the project 
requirement using the selected combinations, the first cutting combination is repeated 
2 times while the second combination is repeated 10 times. The total steel waste 
length is equal to 6 meters. 
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DYNAMIC PROGRAMMING SOLUTION 

The theory of dynamic programming is a powerful optimization technique based on 
implicit enumeration (Aris 1974, Denardo 1982, and Bertsekas 1987). The method 
deals effectively with problems that have a sequential type structure. It splits the 
problem into a sequence of stages in which lower-dimension optimization takes place. 
The basic dynamic programming principle includes the following steps: 

1. Divide the whole problem into a family of problems of the same nature 
2. Tie the optimal solutions of these problems through a recurrence equation 

(objective function). 

The computational process is performed in two passes: a forward pass and a 
backward pass. In the forward pass, local optimizations (i.e., at each stage) are 
determined. In the backward pass, the global optimization (i.e., for the whole 
problem) is determined. 

The dynamic programming solutions for the two tasks (i.e., the feasible cutting 
combinations and the optimal number of cutting combinations) are described in the 
following sections. 

Task One: Feasible Cutting Combinations 

Task One is concerned with the determination of all feasible cutting combinations 
for a standard steel bar. Figure 1 presents a flowchart of the dynamic programming 
procedure in Task One. 

Forward procedure 
The forward procedure is designed to find all optimal and sub-optimal solutions at 
each stage for each of the associated states. A stage (i) represents the bar section 
length (i), where i=l,NSection. NSection represents the number of bar section 
lengths requested. A state (i,j) associated with a stage (i) represents the number of 
bar sections of length (i) that are selected, where j=O, .... ,Nbars(i). Nbars (i) represents 
the maximum number of bar sections oflength (i) that can be cut from a standard steel 
bar. 
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j = I, ... ,NBars(l) 

CumulativeLength = XLength(s,t,l) + j*BarSectionLength(i) 

Store values oft and I for tracing back 
the overall solution during backward pas 

Fig. 1. Task one flowchart 
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To be able to define all optimal and sub-optimal solutions for each stage, it is 
necessary to introduce a steel length function. Let Mi represent the number of optimal 
and sub-optimal solutions at state (i,j). Let XLength(i ,j ,k) denote the k1

h value of the 
steel length function at state (ij), where i=1, .... ,NSection, j= 0, .... ,Nbars(i), and k 
=1,2, ... ,Mi. 

The cumulative steel lengths XLength(i,j;k) are determined by considering every 
preceding state (s,t) associated with the preceding stage (s) that yields a cumulative 
steel length less or equal to the standard bar length (i.e. 12 meters). The cumulative 
steel length associated with the current state (i,j) is given by the following recurrent 
equation: 

XLength( i, j, k) = XLength( s, t, 1) + j * BarSectionLength( i) [1] 

where XLength(s,t,/) is the f' cumulative steel length at the state (s,t) and 
BarSectionLength(i) is the section length (i). 

The dynamic programming procedure begins with an evaluation of the cumulative 
steel lengths at the first stage (i.e., the first bar section length): 

XLength(l,j,l) = j * BarSectionLength(l) . [2] 

Then, the recurrent equation (Eq. 1) is applied for the states associated with the 
remaining stages. The state variable (t) as well as the variant(/) of the cumulative 
steel length Xlength(s,t,l) are stored for tracing back the optimum solution during the 
backward optimization procedure. 

When the steel lengths are computed for the states associated with the last stage, 
the corresponding steel waste lengths are computed by subtracting the actual steel 
lengths from the standard length (i.e., 12 meters). 

Backward procedure 
After solving all of the local optimizations for the last stage (i.e., computing all of 

the steel waste lengths for the states associated with the last stage), the current state 
variable (i) as well as the variant (k) of cumulative steel length that yielded the 
minimum steel waste are selected. Then, starting from the last stage and tracing 
backward, the predecessor's state variable (s) and cumulative steel length variant (I) 
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that led to this minimum steel waste are identified. This process of examining and 
selecting the predecessor's state variable and cumulative steel waste variant 
propagates backwards until the first stage is reached. 

Task Two: Optimal Number of Cutting Combinations 
Task Two computes the number of times each feasible cutting combination has to 

be repeated in order to satisfy the project requirement. Figure 2 presents a flowchart 
of the dynamic programming procedure in Task Two. 

Forward Procedure 
In the dynamic programming .formulation, a stage (i) represents a standard steel bar. 

A state (ij), which is associated with stage (i), represents the selected cutting 
combination (j) determined in Task One. 

The objective of the procedure is designed to find all optimal and sub-optimal 
solutions at each stage for each of the possible states. In order to achieve this 
objective two arrays are used: cumulative waste length Waste and cumulative number 
of bar section length TSL. 

Cumulative Waste Length Array: 
The array stores the cumulative waste lengths generated at every state associated 

with each stage. The k1
h cumulative waste length for state (i,j) is denoted Waste(i,j,k). 

In this expression, i = 1, ......... , N ;j = 1, .... , Ncomb; k=l, .... , M(ij); where Ncomb is 
the total number of feasible cutting combinations; and M(i,j) is the number of optimal 
and sub-optimal solutions at state (i,j). 

The cumulative waste lengths Waste(i,j,k) are determined by considering every 
state (s,t) associated with the preceding stage (s). The k1

h cumulative waste length 
associated with the current state (ij) is given by the following recurrent equation: 

Waste(i,j,k) = Waste(s, t,l) + WastePerCutComb(j) [3] 

where Waste(s,t,l) is the fh cumulative Waste length at the state (s,t) and 
WastePerCutComb(j) is the steel waste generated by the cutting combination U). 
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Preceding state ( t = I) 

Preceding variant of cumulative waste (I = 1) 

Compute cumulative nwnbers of bar sections 
(Eq. 5) 

Compute cumulative waste for the state j 
associated with stage i (Eq. 3). 

Fig. 2. Task two flowchart 
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The dynamic programming procedure begins with evaluating of the cumulative 
steel waste lengths at the first stage (i.e., the first standard length steel bar): 

Wast(i,j,l) = WastePerCutComb(j) [4] 

Then, the recurrent equation (Eq. 3) is applied for the states associated with the 
remaining stages. It should be noted that the state variable (t) and the variant (f) of 
steel waste are stored for tracing back the optimum solution during the backward 
optimization procedure. 

The computational process is continued until the requested number of bar sections 
1s reached. Thus, it is necessary to keep track of the cumulative number of bar 
sections. 

Cumulative Number of Bar Sections: 
The array stores the cumulative number of bar sections. TSL(i,j,k,n) denotes the 

cumulative number of bar section length n associated with the cumul~tive waste length 
Waste(i,j,k). 

The cumulative number of bar section lengths TSL(i,j,k,n) are computed using the 
following equation: 

TSL(i, j, k, n) = TSL(s, t, 1, n) + NurnSectionPerCutComb(j, n) [5] 

where TSL(s,t,/,n) is the cumulative number of bar section length and 
NumSectionPerCutComb(j,n) is the number of bar sections length (n) that are 
generated by the cutting combination (j). 

The cumulative number of section lengths at the first stage is obtained using the 
following equation: 

TSL(i,j,k,n) = NumSectionPerCutComb(j,n) [6] 

Backward Procedure 
This procedure is similar to the one performed in Task One. 
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ILLUSTRATIVE EXAMPLE 1 

The following example is used to illustrate the details of the dynamic programming 
solution. The requirement list, for a specific steel bar diameter, consists of 6 bar 
sections with a length of 2.5 meters, 5 bar sections with a length of 4.3 meters, and 3 
bar sections with a length of 5 meters. 

Task One: Combinations of Section Lengths 
Five states are associated with the first stage while three states are associated with 

the second and third stage (Figure 3). The forward procedure starts by calculating the 
cumulative steel lengths for the first stage. The cumulative steel length for the first 
state is equal to zero. The cumulative steel length for the second state, which is equal 
to 2.5, is computed using Eq. 2. The computation process is continued in the same 
manner for the remaining states associated with stage I. Then, the cumulative steel 
lengths for the states associated with stage 2 are computed using Eq. I. The preceding 
state variable (s) as well as the variant (f) of cumulative steel length are stored for 
tracing back the overall solution during the backward pass. The cumulative steel 
lengths for the states associated with the third stage are computed in a manner similar 
to the one used for the states associated with the second stage. Table I summarizes the 
computation results for the first, second, and third stages. 

Stales Stales Stales 

4 

3 

2 2 2 

Stage 

Section Length 2." 4.1 5.0 
(Ill) 

Fig. 3. Stages and associated states for task one 
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Table 1. Computation results for task one of example 1 

Current Stage Preceding Stage Current Stage 
Steel Bar Steel Cum. Cum. Optimum Preceding 

Stage State Length Section Stage State Length Steel Steel Length 
No. No. Variable Length No. Variable Variable Length Length State Variable 

i j k (m) s t I (m) (m) t I 

I . I I 0.0 ----- ----- ----- ----- 0.0 ----- -----
2 I 2.5 ----- ----- ----- ----- 2.5 ----- -----
3 I 5.0 ----- ----- ----- ----- 5.0 ----- -----
4 I 7.5 ----- ----- ----- ----- 7.5 ----- -----
5 I 10.0 ----- ----- ----- ----- 10.0 ----- -----

2 I I 00 I I I 0.0 00 I I 
I 2 0.0 I 2 I 2.5 2.5 2 I 
I 3 0.0 I 3 I 5.0 5.0 3 I 
I 4 0.0 I 4 I 7.5 7.5 4 I 
I 5 0.0 I 5 I 10.0 10.0 5 I 
2 I 4.3 I I I 0.0 4.3 I I 
2 2 4.3 I 2 I 2.5 6.8 2 I 
2 3 4.3 I 3 I 5.0 9.3 3 I 
2 4 4.3 I 4 I 7.5 11.8 4 I 
3 I 8.6 I I I 0.0 8.6 I I 
3 2 8.6 I 2 I 2.5 Ill 2 I 

3 I I 0 2 I I 0.0 0.0 I I 
I 2 0 2 I 2 2.5 2.5 I 2 
I 3 0 2 I 3 5.0 5.0 I 3 
I 4 0 2 I 4 7.5 7.5 I 4 

I 5 0 2 I 5 10.0 10.0 1 ~ 
I 6 0 2 2 I 4.3 4.3 2 I 
I 7 0 2 2 2 6.8 6.8 2 2 

I 8 0 2 2 3 9.3 9.3 l J. 
I 9 0 2 2 4 Il.8 11.8 l 1.. 
I 10 0 2 3 I 8.6 8.6 3 I 

I 11 0 2 3 2 Ill 11.1 3 2 
2 I 5 2 I I 0.0 5.0 I I 
2 2 5 2 I 2 2.5 7.5 I 2 

2 3 5 2 I 3 5.0 10.0 1 J. 
2 4 5 2 2 I 4.3 8.3 2 I 

2 5 5 2 2 2 6.8 11.8 2 2 
3 I 10 2 I I 0.0 5.0 I I 
3 2 10 2 I 2 2.5 7.5 I 2 

3 3 10 2 I 3 5.0 10.0 1 J. 
3 4 10 2 2 I 4.3 8.3 2 I 
3 5 10 2 2 2 6.8 11.8 1.. 1.. 
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When the cumulative steel lengths are computed for all the states associated with 
the last stage, the corresponding steel waste lengths are computed by substracting the 
cumulative steel lengths from the standard length (i.e., 12 meters). 

The backward procedure starts with the selection of the state variable (i) as well as the 
variant (k) of cumulative steel length that yielded the minimum steel waste at the last 
stage. Then, starting from the last stage and tracing backwards, the predecessor's state 
variable (s) and cumulative steel length variant (l) that led to this minimum steel waste 
are identified. This process of examining and selecting the predecessor's state 
variable and cumulative steel waste variant propagates backwards until the first stage 
is reached. Table 2 summarizes the feasible cutting combinations. 

Task Two: Optimal Number of Cutting Combinations 
In Task Two, all of the feasible combinations listed in Table 2 must be considered 

in the computation procedure in order to guarantee an optimum solution. However, 
the first two combinations are found, by inspection, to yield the optimum solution. 
Therefore, only these two combinations are considered herein in order to simplify the 
computational procedure. 

As shown in Figure 4, two states are associated with each stage. The states 
represent the cutting combinations while the stages represent the standard steel bars. 
The forward procedure starts by calculating the cumulative steel waste lengths for the 
first stage. The cumulative waste and cumulative number of bar sections for the states 
associated with the first stage are computed using Eqs. 4 and 6, respectively. On the 
other hand, the cumulative waste and cumulative number of bar sections for the states 
associated with the second and· third stages are computed using Eqs. 3 and 5, 
respectively. The preceding state variable (s) as well as the variant (I) are stored for 
tracing back the optimum solution in the backward procedure. Table 3 summarizes the 
computation results for the first, second, and third stages. 

In the backward procedure, the state variable as well as the variant of cumulative 
steel waste that yielded the minimum steel waste are selected. Then, starting from the 
last stage and tracing backwards, the predecessor's state variable and cumulative waste 
variant that led to this minimum steel waste are identified. This process of examining 
and selecting the predecessor's state variable and cumulative steel waste variant 
propagates backwards until the first stage is reached. Table 4 summarizes the optimal 
cutting combinations obtained in Task Two. 
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Table 2. Feasible cutting combinations for task one of example 1 

Combination Steel Steel Waste Number of Bar Sections 
Number Length Length No.I No.2 No.3 

_1m~ (m) _12.5ml _14.3 m) J5ml 
1 11.8 0.2 1 1 1 
2 11.8 0.2 3 1 0 
3 11.8 0.9 1 2 0 
4 10.0 2.0 0 0 2 
5 10.0 2.0 2 0 I 
6 10.0 2.0 4 0 0 
7 9.3 2.7 2 I 0 
8 9.3 2.7 0 1 1 
9 8.6 3.4 0 2 0 

States States States States States 

2 2 2 2 2 

1 

Stages 
(Steel Bar No.) 2 3 4 5 

Fig. 4. Stages and associated sates for task two 
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Current Stage 
Steel Number of Sections 

Stage State Waste No.I No.2 
No. No. Var (2.5 m) (4.3 m) 

i k 
l l l l l 

2 I 3 l 
2 l I l l 

l 2 l l 
2 l 3 l 
2 2 3 l 

3 l l l l 

I I l l 
I I l l 
l l l l 

2 l 3 l 
2 2 3 l 

~ 
2 3 3 l 
2 4 3 l 

Table 3. Computation results for task two of example 1 

-------

Preceding Stage Current Stage 
Waste Steel Number of Sections Waste Cum. Number of Sections Ootimum Precedimz. 

No.3 Per Stage State Waste No.I No.2 No.3 Per Steel No.I No.2 No.3 Waste 
(5 m) Comb. No. Var. Var. (2.5 m) (4.3 m) (5 m) Comb. Waste (2.5 m) (4.3 m) (5m) State Variable 

m s t I (m) (m) t I 
l 0.2 ----- ----- ----- ----- ----- ----- ----- ----- l l l ----- -----
0 0.2 ----- ----·· ----- ----- ----- ----- ----- ----- 3 l 0 ----- -----
l 0.2 I l l l l I 0.2 0.2 2 2 2 l l 
l 0.2 l 2 l 3 l 0 0.2 0.2 4 2 l 2 l 
0 0.2 l l l l l l 0.2 0.2 4 2 l l l 
0 0.2 l 2 l 3 l 0 0.2 0.2 6 2 0 2 l 
l 0.2 2 l l l l I 0.2 0.4 3 3 3 l l 

l 0.2 2 l 2 l l l 0.2 0.4 ff. J.. 1.. L 1.. 
l 0.2 2 2 l 3 l 0 0.2 0.4 7 3 l 2 l 
l 0.2 2 2 2 3 l 0 0.2 0.4 9 3 0 2 2 

0 0.2 2 I I l l l 0.2 0.4 ff. J.. 1.. L L 
0 0.2 2 I 2 l l l 0.2 0.4 7 3 l l 2 
0 0.2 2 2 l 3 l 0 0.2 0.4 7 3 l 2 l 
0 0.2 2 2 2 3 l 0 0.2 0.4 9 3 0 2 2 

Cum. 
Steel 

Waste 
(m) 
0.2 
0.2 
0.4 
0.4 
0.4 
0.4 
0.6 

0.6 
0.6 
0.6 

0.6 
0.6 
0.6 
0.6 

0 
~ 
~ 

~ 
("") 

~ 
2 
~ 
00 
n ;; 
~ 

~ 
0 
~ 

~ 
~ 
~ 
2 
~ 
00 

;d 
~ 
~ 

~ 
00 
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Table 4. Optimal number of cutting combinations (Task two of example 1) 

Number of Cutting Combinations Number of Sections Total Waste 

#1 #2 2.5m 4.3m 5.0m (m) 

2 1 5 3 2 0.6 

ILLUSTRATIVE EXAMPLE 2 

The following example, which was reported by El-Bahrawy (1995), is given to 
compare the results of the dynamic programming solution with those of the linear 
programming. 

A construction project requires, for a specific steel bar size, 50 bar sections with a 
length of 8.2 meters, 20 bar sections with a length of 5.3 meters, 30 bar sections with a 
length of 4.2 meters, and 60 bar sections with a length of2.1 meters. 

The first step in the dynamic programming solution of the problem is the 
enumeration of the feasible cutting combinations. Table 5 summarizes these cutting 
combinations. The second step is the determination of the optimal number of cutting 
combinations. Table 6 summarizes the solution found~ 

The final solution obtained is the same as the linear programming solution. 
However, the dynamic programming solution provides two optimal combinations 
instead of one. This additional combination gives the engineer an opportunity to 
choose between two optimal solutions. 

Table 5. feasible cutting combination for task one of example 2 

Combination Combinations Waste Length 
Number (m) 

1 2 * 5.30 1.4 
2 2.10+2*4.20 1.5 
3 2.10 + 1 * 8.20 1.7 
4 8.2 3.8 
5 5.3 + 3 * 2.1 0.4 
6 4.2 + 2.1 * 3 1.5 
7 5 * 2.1 1.5 
8 5.3 + 4.2 + 2.1 0.4 
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Table 6. Optimal number of cutting combinations (Task two of example 2) 

Solution Number of Cutting Combinations Number of Sections Total Waste 
Number #1 #2 #3 #4 2.1 m 4.2m 5.3 m 8.2m (m) 

1 10 15 46 4 61 30 20 50 132 
2 10 15 45 5 60 30 20 50 132 

CONCLUSIONS 

The present offers a dynamic programming solution to the problem of optimal 
cutting schedule of reinforcing steel bars. The solution is divided into two tasks. The 
first one (Task One) finds the feasible cutting combination while the second one (Task 
Two) finds the optimal number of cutting combinations. Two illustrative examples 
were given to demonstate the details of the dynamic programming solution and to 
compare the results with the linear programming solution presented by El-Bahrawy 
(1995). The proposed solution finds all possible optimum cutting combinations. The 
disadvantage, however, is the difficulty in solving large size problems. With the 
availability of more powerful computers, the latter problem can be easily overcome. 
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