
Engineering Journal of the University of Qatar, Vol. 13, 2000, pp. 

PRELIMINARY DESIGN OF REINFORCED CONCRETE 
BEAMS USING NEURAL NETWORKS 

Ahmed B. Senouci 
Civil Engineering Department 

University of Qatar 
P. 0. Box 2713 

Doha, Qatar 

ABSTRACT 

This paper presents a backpropagation neural network model for the preliminary design of 
rectangular concrete beams. The model, which is developed based on the strength design 
procedure of the American Concrete Institute (ACI), minimizes the beam total cost 
including the costs of concrete, steel, and shuttering. The backpropagation neural network 
was successful in accurately capturing the nonlinear characteristics of the strength design 
procedure. The network adequately learned a set of 375 examples during the training 
phase. A case study, where a set of 960 new cases were considered, was used to validate 
the network and to demonstrate the system's generalization and fault-tolerance properties. 
The network showed good generalization properties since it was able to predict the correct 
beam depth and steel area with a fair accuracy. 

INTRODUCTION 

The preliminary design represents the first step in the analysis/design of a 
structural system. With the results of the preliminary design, the members are 
proportioned, and the resulting dimensions are compared with those previously 
assumed . If necessary, the assumed section properties are modified, and the 
analysis/design is repeated. Since the procedure may become lengthly and 
laborious, it is advantageous to make the best possible estimate of member sizes, in 
the hope of reducing the number of analysis/design cycles. Structural design is a 
creative process in which the experience and knowledge of the designer are 
combined. Less experienced structural designers may go through many trials before 
a suitable solution is achieved. The development of a computerized tool to assist 
less-experienced structural designers in their preliminary design is definetely useful 
and needed. 
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Neural networks are computational models that have been successfull in 
performing complicated pattern recognition and nonlinear mapping tasks over a 
broad spectrum of applications in a number of fields such as engineering, finance, 
science, and medecine. A number of researchers have reported the use of neural 
networks in the area of Structural Engineering. Liu and Gan (1991) developed a 
neural network for the preliminary design of space-grid structures. Hajela and Berke 
( 1991) developed a Hopfield network for the optimum design of trusses. Park and 
Adeli ( 1995) developed a neural dynamics model for the design optimization of steel 
structures. 

Recently, Senouci and Abdul-Salam (1998) developed a backpropagation neural 
network for the depth prediction of reinforced concrete beams. This paper, which 
extends the work done by Senouci and Abdul-Salam, presents the development of a 
neural network system for the preliminary design of rectangular concrete beams. The 
system minimizes the beam total cost including the costs of concrete, steel, and 
shuttering. It was validated by data and criteria provided by the American 
Concrete Institute (ACI-318 1995). The generalization properties ofthe proposed 
system were also demonstrated using a case study. 

NEURAL NETWORK FOR PRELIMINARY CONCRETE BEAM 
DESIGN 

The total structural design process is not well suited for computer applications 
because it requires the use of human intelligence, past experience/knowledge, and 
intuition. The rule-based expert system approach, which represents an obvious 
choice for the computerization of the structural design process, has unfortunately 
failed to program the total design process (Adeli and Balasubramanyam 1988). 
The main drawback of the rule-based expert system approach is that it lacks the 
learning capability for a structural design application and is unable to generalize the 
situation on its own to apply the given solution to an entirely new situation. In view 
of these difficulties, it becomes very difficult for a design program to incorporate the 
needed intuition and use of past experience, which is essential in the case of a 
preliminary design. 

Neural networks can learn through designs created by experts. The expert's 
knowledge, intuition, and past experience can be simulated by a neural network 
trained to learn the many possibilities of beam design. In other words, the neural 
network can be trained to learn the different design alternatives used locally. 
Subsequently, they are able to apply this knowledge to solve a new problem. It may 
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also be noted that neural networks allow massive parallel processing. Therefore, 
they can generate a good design faster than a mathematical optimizer. 

A backpropagation neural network is developed for the preliminary design of 
rectangular concrete beams. Backpropagation neural networks have a proven 
ability to model nonlinear relationships such as encountered in the design of 
rectangular concrete beams. 

Detailed discussion on backpropagation neural networks can be found elsewhere 
(Simpson 1991, Hertz et. Al. 1991, Masters 1993). 

NEURAL NETWORK DEVELOPMENT 

Optimal Design Model 

The first step in the development of a neural network system is to obtain good 
training and testing examples. In this paper, the training and testing examples were 
obtained by generating minimum cost designs of singly-reinforced rectangular 
beams. 

The cost per unit length of a beam is given by the following equation 
(Chakrabarty 1992): 

(1) 

where Cost = cost per unit length of the beam ($/m), C 1 3 unit cost of tensile 
reinforcing steel bars ($/kg), C2 = unit cost of con'!ete ($/m ), C3 = unit cost of 
concrete formwork along the vertical surfaces ($/m ~ C4 = unit cost of concrete 
formwork along ~e bottom horizontal surface ($/m ), As= area of tensile steel 
reinforcement (m ), d =depth of the beam (m), and b =width of the beam (m). 
Table 1 summarizes the values for C 1, C2, C3, and C4 obtained from local 

' contractors and suppliers. 

The variables (As), (d), and (b) affect the beam cost and strength. In order to 
generate optimum designs, different values for the beam width (b) were selected. 
The variables (d) and (As) were, then, determined so that the total cost of the beam 
is minimum and its strength is adequate. 
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Table 1. Values ofC1, C2, C3, and C4(State of Qatar) 

Value (Q.R.) 
Parameter Unit 

(1 US$=3.65 Q.R.) 

C1 kg 1.32 

C2 m3 226.00 

C3 m2 5.50 

C4 m2 5.50 

The computer program BeamDesign, whose flowchart is shown in Figure 1, was 
written in FORTRAN to generate minimum cost designs for rectangular concrete 
beams (Fintel1985 and McCormac 1993). 

Network Architecture 

In developing a neural network for the preliminary design of rectangular concrete 
beams, a backpropagation neural network with one hidden layer was used. The 
neural network, which has been chosen for the present research, has 19 input 
neurons and two output neurons. Table 2 summarizes the input and output 
components of the neural network. Figure 2 shows the selected backpropagation 
neural network. 

The input components take binary values (i.e., either 0 or 1 ). The set of 
components 1-5 represents whether the beam span length is very low, low, medium, 
high, or very high; the set of components 6-10 represents whether the beam load 
intensity is very low, low, medium, high, or very high; the set of components 11-15 
represents whether the beam width is equal to 200, 250, 300, 350, or 400 mm; the 
set of components 16-17 represents whether the concrete compressive strength is 
equal to 20 or 30 MPa; the set of components 18-19 represents whether the 
reinforcing steel yield strength is equal to 300 or 400 MPa. The components in each 
set are not mutually independent. In other words, if a component in a set takes the 
value of 1. 0, all the other components in the set will take the value of 0. Table 3 
summarizes the value ranges of the network input attributes. 
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Fig. 1. Program beamdesign flowchart 
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Table 3. Value Range of User-Provided Information 

Design Description Value 

Variable Range 

Span Very Short Span<= 3m 

Span Short 3 <Span<= 4 

Span Medium 4 <Span<= 5 

Span Long 5 <Span<= 6 

Span Very Long Span>= 6 

Load Very Low Load <= 20 kN/m 

Load Low 20 < Load <= 35 

Load Medium 35 < Load <=50 

Load High 50 < Load <= 65 

Load Very High Load>= 65 

Beam Width Width = 200 mm 

Beam Width Width = 250 mm 

Beam Width Width= 300 mm 

Beam Width Width = 350 mm 

Beam Width Width = 400 mm 

Concrete Strength fc = 20 Mpa 

Concrete Strength fc = 30 Mpa 

Steel Yield Strength Fy = 300 Mpa 

Steel Yield Strength Fy = 400 Mpa 
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As an alternative scheme, a continuously valued component could be used for 
representing each set of factors. Though this scheme reduces the network size and 
the amount of computation, it is not preferred because: 1) a neural network learns 
faster with binary input, 2) a binary input helps in clustering the data right from the 
input level, and 3) the size of the network is not of concern since the prediction of 
the network is extremely fast. A training example describes the beam characteristics 
for preliminary design with 19 factors (though all of them are not independent). The 
pattern associator forms an arbitrary mapping that exists between the inputs and the 
outputs. Thus, the implicit interfactor dependencies are also learned by the network 
during the training process. 

In contrast, the output components, which represent the beam depth and steel 
area, take continuous values between 0 and 1. The number of hidden neurons is 
chosen to be 19 on a trial-and-error basis. It is desirable to have as few hidden. 
neurons as possible, but too few hidden neurons, the network will not converge . 
during the training process. We started with 5 hidden neurons and increased each 
time the network did not converge to a desired level. 

Network Input and Output Data 

The program BeamDesign was used to generate the training and testing 
examples. Table 4 summarizes the values of the design variables used to generate 
the example set. Each example consists of 19 input components and two output 
components. The beam depth and steel area have to be scaled to values in the 
range 0-1. This is necessary because the sigmoid transfer function modulates the 
output values between 0 and 1. 

Table 4. Design Variable Values for Training and Testing Examples 

Design Variables Values 

Span 3.0, 4.0, 5.0, 6.0, 7.0 m 

Load 20, 35, 50, 65, 80 kN/m 

Beam Width 200, 250, 300, 350, 400 mm 

Concrete Strength 20,30 Mpa 

Steel Yield Strength 300,400 Mpa 
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Network Training and Testing 

The training and testing of the neural network were performed using the neural 
network simulator, Brainmaker (Brainmaker 1993). The network was trained with 
375 examples. The optimum number of hidden neurons for the network was 
determined on a trial-and-error basis. Figures 3 through 6 show the training 
convergence of the network with 5, 10, 15, and 19 hidden neurons, respectively. 
The figures show that the network with 19 hidden neurons yielded the lowest 
average training results. It should also be noted that increasing the number of hidden 
neurons above 19 did not improve the network training convergence. 

A set of 125 examples was used to test the network during training. The average 
testing errors for the network with 5, 10, 15, and 19 hidden neurons were 0.0331, 
0.0315, 0.0253, and 0.0180, respectively. Nineteen hidden neurons were selected 
for the network because the average network training and testing errors were the 
smallest (0.0164 and 0.0180). 
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Fig. 3. Network training convergence (5 hidden neurons) 
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Fig. 4. Network training convergence (10 hidden neurons) 
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Fig. 5. Network training convergence (15 hidden neurons) 
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Fig. 6. Network training convergence (19 hidden neurons) 

GENERALIZATION PROPERTIES 

10000 

A trained network should be capable of generalizing the governing rules to 
accurately determine an output from new (not previously introduced) inputs. In 
order to verify the generalization properties of the developed system and to evaluate 
its performance, 960 new examples were used. The beam design values ofthe 
variables used to generate the case study examples cover a reasonable domain of 
reinforced-concrete beam spans and lengths, concrete compressive strength, 
reinforcing steel yield strength, and beam width (Table 5). The selected beam span 
lengths and loads, reinforcing steel yield strength, and concrete compressive were 
different from the ones used to generate the training and testing examples. 

Table 5. Design Variable Values for Case Study Examples 

Design Variables Values 

Span 3.5, 4.5, 5.5, 6.5 m 

Load 70, 90, 100, 110 kN/m 

Beam Width 200, 250, 300, 350, 400 mm 

Concrete Strength 20, 25, 30, 35 MPa 

Steel Yield Strength 300, 350, 400 MPa 
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The beam depth and steel area obtained using the optimizer (i.e., program 
BeamDesign) were compared with those predicted by the network. Table 6 show 
a sample of the case study results. The table shows the values of the beam depths 
and steel areas obtained using the optimizer and the network, respectively. The last 
two columns of the table represent the percentage error in the beam depth and steel 
area predictions of the network. The values predicted by the network are not in 
exact agreement with the values predicted by the optimizer. Table 7 summarizes the 
mean errors and standard deviations of the case study results. Figure 7 shows the 
histogram of the percent error in the beam depth and steel area predictions of the 
network. 

Because It IS proposed to use the neural network for the preliminary design, the 
network results can serve as a good starting values. Once the preliminary design 
model is fmalized, the remaining part in a design program can well be handled using 
the conventional design programs to fine-tune the preliminary design. The present 
network was able to map the complicated functional relation between the input and 
the output parameters, which give the desired near-optimal values. 

CONCLUSIONS 

In this study, a neural network system for the preliminary design of rectangular 
concrete beams was developed. The study showed that the neural network system 
performed well in the design of concrete beams. The following summarizes the 
findings of the study. 

The presented neural network offered a systematic procedure that accurately 
predicted the minimum cost beam design. The proposed network can be used by 
structural engineers to speed up the design process. 

The network was able to adequately learn from the training examples and was 
able to capture the characteristics of the beam design problem. 

The network showed a good generalization capability, and was able to predict the 
beam depth and steel areas for 960 new beam designs with an average absolute 
percent error of 4.1 and 12.3, respectively. 

Similar neural networks can be developed for different sets of data related to 
other design environment. 
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Table 6. Case study result sample 

Beam Concrete Steel Oj:ltimnn Design Neural Network Beam Steel 
Beam Factored Beam Compressive Yield Beam Steel Beam Steel Depth Area 
Span Load Width Strength Strength Depth Area Depth Area Error Error 

(m) (kN!m) (nm) (MPa) (MPa) (nm) (nm2) (nm) (rrrn2) (%) (%) 

3.5 90 200 20 300 800 753 849 829 6.2 10.1 

3.5 90 250 20 300 750 810 806 873 7.5 7.8 

3.5 90 350 20 300 600 1050 665 1114 10.8 6.1 

3.5 100 400 20 300 600 1166 646 1094 7.6 6.2 

4.5 45 200 20 300 750 691 859 767 14.5 10.9 

4.5 90 300 20 300 850 1194 908 1305 6.8 9.3 

4.5 90 350 20 300 800 1281 863 1347 7.8 5.1 

6.5 45 350 20 300 850 1349 930 1549 9.4 14.8 

6.5 45 400 20 300 800 1456 916 1640 14.5 12.7 

7.5 25 350 20 300 750 1237 819 1307 9.2 5.7 

7.5 25 400 20 300 700 1354 769 1449 9.9 7.0 

3.5 100 250 20 350 750 772 806 873 7.5 13.1 

3.5 100 400 20 350 600 1000 646 1094 7.6 9.4 

3.5 90 200 20 400 800 565 842 626 5.2 10.8 

3.5 90 350 20 400 600 787 660 834 9.9 5.9 
3.5 90 400 20 400 600 788 646 828 7.7 5.0 

3.5 100 250 20 400 750 675 799 621 6.6 7.9 

3.5 100 400 20 400 600 875 646 828 7.7 5.4 

4.5 45 200 20 400 750 518 860 567 14.6 9.4 

4.5 45 350 20 400 600 680 678 777 13 14.3 

4.5 90 300 20 400 850 895 907 955 6.7 6.7 

3.5 90 200 25 300 800 746 849 829 6.2 11.2 

3.5 90 350 25 300 600 1038 665 1114 10.8 7.4 

3.5 90 400 25 300 600 1041 646 1094 7.6 5.1 

3.5 100 400 25 300 600 1154 646 1094 7.6 5.2 

4.5 45 200 25 300 750 684 859 767 14.5 12.1 

4.5 90 300 25 300 850 1182 908 1305 6.8 10.4 

4.5 90 350 25 300 800 1269 863 1347 7.8 6.1 

6.5 45 400 25 300 800 1442 916 1640 14.5 13.8 

7.5 25 250 25 300 850 1030 931 1125 9.5 9.2 

7.5 25 300 25 300 800 1123 875 1186 9.4 5.6 

7.5 25 350 25 300 750 1225 819 1307 9.2 6.7 

7.5 25 400 25 300 700 1340 769 1449 9.9 8.1 

3.5 100 250 25 350 750 764 806 873 7.5 14.3 

3.5 JOO 400 25 350 600 -989 646 1094 7.6 10.6 

3.5 90 200 25 400 800 559 842 626 5.2 11.9 

3.5 90 350 25 400 600 779 660 834 9.9 7.0 
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Table 7. Case Study Error Analysis 

Beam Depth Steel Area 

Network Mean Standard Mean Standard 

Number Error Deviation Error Deviation 

(%) (%) (%) (%) 
1 4.1 5.7 12.3 9.2 
2 4.2 5.6 12.7 9.4 

EaDepth Bl Steel Area 

Error Range (%) 
Fig. 7. Testing result error histogram 

REFERENCES 

1. ACI-318 (1995). Building code requirements for reinforced concrete. American 
Concrete Institute, Detroit, USA. 

2. Adeli, H. and Balasubramanyam, K., V. (1988). " A knowledge-based system 
for design of bridge truss," Journal of Computing in Civil Engineering, 
American Society of Civil Engineers, Vol. 2, No. 1, pp. 1-20. 

121 



Senouci 

3. Brainmaker (1993). Neural Network Simulator. California Scientific 
Software, Nevada City, CA 95959, USA. 

4. Chakrabarty, B. K. (1992). " A model for optimal design of reinforced 
concrete beam," Journal of Structural Engineering, American Society of Civil 

. Engineers, Vol. 118, No. 11, pp. 3238-3242. 

5. Hajela, P. and Berke, L. (1992). "Neural networks in structural analysis and 
design: An overview." Computing Systems in Engineering, 3 (1-4), pp. 525-538. 

6. Hertz, J., Krogh, A., and Palmer R. G. (1991). Introduction to the theory of 
neural computation. Addison-Wesley Publishing Company, California 94605, 
USA. 

7. Fintel, M. (1985). Handbook of Concrete Engineering. znd Edition, Van 
Nostrand Reinhold Company, New York, New York 10020, USA. 

8. Liu, X. and Gan, M. (1991). "A preliminary design expert system (SPRED-1) 
based on neural networks." Artificial Intelligence in Design, Butterfield­
Heinman Ltd., Oxford, England, pp. 785-800. 

9. McCormac, J. C. (1993). Design of Reinforced Concrete. Harper-Collins 
College Publishers, New York, NY 10022. 

10. Masters, T. (1993). Practical neural network recipies in C++. Academic 
Press, San Diego, California 92101-4311, USA. 

11. Park, H. S. and Adeli, H. (1995). "A neural dynamics model for structural 
optimization-Application to plastic design of structures." Computers and 
Structures, Vol. 57, No.3, pp. 391-399. 

12. Simpson, P. K. (1991). Artificial Neural Systems. Pergamon Press, New 
York, NY, USA. 

13. Senouci, A. B. and Abdul-Salam M.A. (1998). "Prediction of Reinforced 
Concrete Beam Depth Using Neural Networks." Engineering Journal of the 
University of Qatar, Vol. 11, pp. 117-132. 

122 


