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ABSTRACT 

Some elastic properties of green and sintered titanium compacts were 
experimentally measured. The results were compared with the theoretical 
predictions based on Mackenzie's and Walton's models. It was concluded that 
the results obtained with the titanium compacts in the present work span a 
range of behaviour such that no one, simple model can account for the 
complete range. 

NOMENCLATURE 

a Average radius of contacts. 
n Average number of contacts between a spherical grain and its neighbours. 
K Bulk modulus of the solid material. 

• 
K Bulk modulus of the titanium compact. 
R Average radius of a spherical grain. 
p Density of the titanium compact. 
p s Density of the solid material. 
J.l Shear modulus of the solid material. 
• J.l Shear modulus of the titanium compact. 

INTRODUCTION 

The problem of calculating the moduli of porous solids, in general, is one 
which has been examined by various workers over a number of years [1-12]. 
Essentially, the problem is formulated in the following way. Given grains of a solid 
material (assumed isotropic) with known elastic moduli (,u,x.-), we wish to calculate 
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the moduli (,u •, K •} of a collection of grains which are held together by bonding 

along limited sections of the surface areas of the grains. The simplest approach is to 
assume that the porosity consists of isolated spherical holes in the solid material. 
However, the isolated hole model probably does not correspond to some ofthe 
structures produced in the present work at high porosities. In this case a better 
model might consist of spheres bonded together along parts of their circumference. 
Most theories for the stiffuess values of porous materials have been developed for 
dense bodies with either isolated porosity by Mackenzie [1] or isolated penny-shaped 
cracks by Walsh [3], both of which are distributed randomly. These theories were 
originally restricted to low concentrations of the pores or cracks which might be a 
reasonable assumption for the sintered material. The unsintered material though 
might be different on a microstructure level. Metallographic examination of the 
sections of unsintered titanium compact presented ambiguous evidence to support 
this idea. Therefore, the Walton's model [9] for the elastic modulus ofweakly 
bonded spheres connected together by pressure and elastic deformation in a random 
arrangement was also considered to be a reasonable assumption to interpret the 
present results of unsintered titanium compacts. 

MATERIALS AND METHODS 

Sponge titanium powder ( < 100 J.lm in diameter) was used in the present 
investigation. The powder was cold pressed at various pressures up to 300MPa. The 
moulded compact (green body) was placed in a rubber bag which was partially 
evacuated with a vacuum pump. It was then further consolidated by cold isostatic 
pressing in a Laboratory Isostatic Press. Some specimens were sintered at 
temperatures between 900 and 1000°C for 5 hours in an atmosphere of flowing 
argon. 

The mechanical properties, such as Young's modulus and Poisson's ratio, were 
measured using four-point bend loading in which the specimen strain was measured 
directly by strain gauges cemented to the specimen surface. By measuring the 
bending deflection of the test specimen, it was possible to calculate the Young's 
modulus using a simple theory by Stephens [13]. In the results described below, the 
measured values of Young's modulus, E, and Poisson's ratio, v, were used to 
calculate the shear modulus J.l and bulk modulus K using the isotropic 
approximation [14]. These two quantities are more fundamental since they represent 
the resistance to shape change and volume change, respectively. The relations 
between these parameters are:-
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E 
j..l.=---

2(1 + v) 

E 
K.=----

3(1- 2v) 

(1) 

(2) 

(The percentages of errors involved in using equations (1) and (2) with solid 
titanium values against experimental values for compact titanium were 12% for 
equation (1) and 15% for equation (2)) 

The density and porosity were determined by the standard water displacement 
method described by Prokic [15]. 

RESULTS AND DISCUSSION 

The results were formulated and expressed by the above two models i.e. 
Walton's model [9] for a collection of grains similar to the structures shown in Fig. 1 
and Mackenzie's model [ 1] for the isolated holes in a solid material as depicted in 
Fig. 2. It can be shown that Walton's model gives the following results when 
interpreted in terms suited to the present discussion, the shear modulus of the 
compact is given by 

• 0.8 a p 
ll =-Cn--J..I. 

1t R Ps 
(3) 

where n is the average number of contacts between a spherical grain and its 
neighbours. It is expected that n takes a value between 4 and 6. Taking n = 5 as an 
average value we have : 

ll*_4cap --- --
ll 1t R Ps 

(4) 

where (see Appendix - A) (5) 
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and a is the average radius of contact, and R is the average radius of a spherical 
grain (see Figs 3 and 4). The ratio aiR is likely to be between 0 and 0.3 depending 
on the bonding between the grains. p is the density of the compact and Psis the 
density of the solid material. 

Fig. 1. Fracture surface of unsintered titanium compacts, bonded at high 
compaction pressure (300MPa), Young's Modulus (34GPa) 

Fig. 2. Isolated holes in the titanium compacts (sintered for 5 hrs 
at 900°C, compacted at 300 MPa) 
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Fig. 3. Random arrangement of weakly bonded spheres 
as used in Walton's model [9] 

Fig. 4. Fracture surface of unsintered titanium compacts, grains (or particles) 
are bonded along parts of their circumference (140MPa compaction p 
ressure) similar to the random spheres of Walton's model 

A plot of 1J. *I 1J. versus the porosity (1- pIps) is shown in Fig. 5 for selected 
values of aiR between 0 and 0.3. It is clear that the shear modulus of the compact is 
strongly influenced by the radius of the bonding area a between the grains in Fig. 
5 (Walton's model). 
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Fig. 5. Relative shear modulus !J.• I !J. versus the porosity for some 

values of aiR between 0 and 0.3 in Walton's model 

Walton's model also gives the ratio of the shear modulus J..l• to bulk modulus 
• K of the compact. It turns out that the ratio is independent of the porosity and the 

contact radius, i.e. 

(see Appendix -A) (6) 

where J.1 and K are the shear and bulk moduli of the solid material, respectively. For 
solid titanium J..l I K = 0.3 as is, typical of many soft metals. Inserting this value in 

equation (6) above gives J..L• I K • = 1.3, i.e. Walton's model predicts a high ratio of 
shear to bulk modulus. 

We now consider Makenzie's model of a porous solid which was formulated on 
the basis that the pores are isolated (Fig. 2). In fact, Mackenzie assumed that the 
porous material contains spherical voids which do not interact strongly with one 
another. For the shear modulus Mackenzie obtained, 
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(7) 

and for the ratio of shear to bulk modulus, 

• 
K 

I' P, + ~ {I -~} 
K p 4 p 

(8) 
• 

J.l 

Ps 

Inspection of equation (7) shows that Mackenzie's expression for the shear 
modulus may not be correct for very porous solids because it fails to reach the limit 

J..1. • I J..L ~ 0 as pIps ~ 0. Thus we must take Mackenzie's result for the 

shear modulus to be appropriate only in the limit of dilute porosity. However, the 
interesting feature of Mackenzie's model is that in contrast to the shear modulus, the 
bulk modulus falls rapidly as the porosity increases. This is very roughly in line with 
our experience of the behaviour of the titanium compacts where the bulk modulus 
falls more rapidly with porosity than the shear modulus (see Fig. 6). There is an 
analogy here with the behaviour of liquids containing small bubbles of gas. It is 
known that the bulk modulus of liquids containing gas can be very much lower than 
that of the de-gassed liquid. In contrast the viscosity of the liquid (resistance to 
shape change) is relatively little affected by the gas content. 

The experimental results for the titanium compacts are compared with the 
various theoretical predictions in Figs 7 and 8. Figure 7 shows the shear modulus 

ratio J..1. • I J..1. as a function of porosity (1- p I p s). Clearly the moduli are much 

lower than what Mackenzie's model predicts. Walton's model gives some results 
closer within the range of observed values, but, of course the relation is adjustable 
depending on the value of the contact radius a chosen. From this it is possible to 
interpret the experimental results as showing values of aiR for the titanium 
compacts which are not independent, but vary with the porosity. 
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Fig. 6. K and f...l as a function of porosity for sintered and green 
titanium compacts 
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Fig. 7. Comparison of the experimental results with the models of 
Walton at (aiR= 0.2) and Mackenzie 
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Fig. 8. Experimental results of the relative shear to bulk modulus of 
sintered and unsintered titanium compacts compared with 
Mackenzie's [1] model, the value ofWalton's[9] model and with 
the solid titanium value 

The problem in understanding the moduli values of porous solids is that a wide 
range of behaviour can occur, depending on the model adopted. The results we have 
obtained with the titanium compacts in the present work probably span a range of 
behaviour such that no one, simple model can account for the complete range. 
Figure 8 shows that the relation of IJ. • I K • , for the compacts compressed to the 
highest pressure and then sintered is probably close in behaviour to the isolated 
porosity model. At the other extreme, the unsintered compacts found at the lowest 
pressure are probably quite close to the weakly bonded sphere model. 
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CONCLUSION 

In qualitative terms, the following conclusions can be made: 

1- In the unsintered compacts, K • is small relative to fJ. •. One interpretation of 
this is that the compacts are relatively unresistant to a change in volume 
compared with the solid material, e.g. that the holes in the structure are 
opened or closed more easily than the shape of the compact is changed. 

2- In the sintered compacts, K • falls off more rapidly than fJ. • as the porosity is 
increased. Again this indicates a relative reduction in resistance to volume 
change compared with resistance to shape change. 
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APPENDIX-A 

This Appendix interprets Walton's (1987) model in to terms appropriate for 
unsintered titanium compact materials as follows: 

B = _1_{_!_+_1_} = _1_x 2f.l +A . 
4;r f.1 f.1 +A 4;r f.l(f.l + K) ' 

5B + c = 2 3 f.1 + 3K = 2 1 + f.1 I K 

2B + C 2 f.1 + 3K 1 + 3_ f.1 
3K 

* 
Hence, f.1 

Area of contact a 2 = W.,R 

Compacting strain e = W., = ( !:!._) 2 

R R 
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4n- f.1 f.1 +A 
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(A.3) 

(A.4) 
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(A.7) 

(A.8) 
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From equation (A.3) ,u*= 
0.2 (1+ ,uiK) ¢ na 

;rr2 (1 + ~ ,u I K) B R 
3 

smce, 

0.2 (1 + ,u I K) 1 na p 
Thus ,u* = --

;rr2 (1 + ~ ,u I K) B R Ps 
3 

2 
A=K--,U 

3 
2 4 

2,u+A = 2,u+K--,U =-,u +K 
3 3 

2 1 
,U +A= ,U+K--,U = -,U+K 

3 3 

Substitute equation (A.l5) in to equation (A.l): 

4 4 
-,U+K 1 (l+J,UIK) 

B = _1_ --=3 ___ = 
4;rr 1 4;rr 1 

,U(-,U+K) ,U (1+-,UIK) 
3 3 

4;rr(1 +! II I K) II 
0.2 (1 +,u I K) 3 r rna p 

,u*= 
2 2 4 R 

7r (1+-,UIK) (1+-,UIK) Ps 
3 3 

,u* = 0.8 c,una _.!!_ 
;rr R Ps 
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(All) 

(A.12) 

(A.13) 

(A.l4) 

(A.15) 

(A.l6) 

(A.17) 

(A.18) 



C = (1 + p.l K) 
2 

(1+-p.IK) 
3 

Poisson's Ratio~ 

1 
(1+-p.IK) 

3 
4 

(1+-p.IK) 
3 

2 
K--p. 

V= 3 
1 

2(K+-p.) 
3 
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2 
1--p.IK 

3 
1 

2(1 +- p.l K) 
3 

1 2 
Thus, 2 v(1 + - p. I K) = 1- - p. I K 

3 3 

and, 
2p. 2p. p.2 2 

2v +--v+--= 1; -(-v +-)=1-2v 
3K 3K K 3 3 

p. 3 (1-2v) 
.'. K = 2 (1 + V) 

v = 0.3 81 for solid titanium thus, p. = 0.26 
K 

.'. C = 126 
X 

1087 = 0.867 
1.17 1.35 

p. • = 0.8 C na _p_ = 022 na _p_ 
P. 7r R Ps R Ps 
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(A.22) 
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(A .24) 
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