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ABSTRACT 

In this paper a nonlinear Internal Model Control (IMC) strategy based on a 
modified NARMA model is proposed. The IMC controller consists of a 
model inverse controller and a robustness filter with a single tuning 
parameter. Under such a controller, the control quality and the robustness can 
be influenced in a direct manner. From the input-output observation data of 
the plant, a neural network is trained off-line using Back-Propagation 
algorithm to emulate the feed-forward dynamics of the plant. This neural 
plant model provides a simple check of the model invertability, which plays a 
critical role in the IMC strategy. Using the same network used in the feed­
forward model of the plant, an exact model inverse is obtained directly 
assuming invertability of the plant model. The exact inverse of the plant 
model is very important to achieve offset-free performance. Simulation 
examples demonstrate the simplicity of the design procedure and the good 
performance characteristics of the proposed nonlinear IMC controller. The 
examples show that the proposed controller is superior to conventional PID 
controller and it can also be applied to systems having time delay. 

INTRODUCTION 

Model based control strategies for nonlinear processes usually require local 
linearization and linear control design based on the linearized model. Since 
reasonably accurate nonlinear models are available for a variety of processes, 
control strategies in which the nonlinear process model serves as the basis for 
controller design can be expected to yield significantly improved performance. 
There are a number of nonlinear system identification techniques available, 
however, neural networks offer some of the most versatile ways of modeling 
nonlinear processes of a diverse nature [I]. 

Although many different neuro-controller architectures exist yet they have not 
achieved wide spread acceptance in industrial applications. The lack of general 
stability theory prevents their use in life-critical situations and slow training 
algorithms can cause problems when using adaptive systems. Moreover, for real 
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applications of control theories, the control algorithm should be simple enough to 
be implemented and to be understood. This explains why untill993, about 84% of 
the control industry in Japan used the conventional PID controllers [2]. 

This paper aims at presenting a control algorithm which is simple to be 
implemented and to be understood, furthermore, it has some desirable properties 
such as robustness, flexibility, and coping with nonlinearities. One particular 
control approach for which a well-understood framework exists for the structured 
utilization of nonlinear plant models is the IMC strategy. 

The idea of using neural networks for nonlinear IMC was considered for the 
first time by Bhat and McAvoy [3]. However, they do not appear to have 
implemented a neural network based nonlinear IMC controller. Hunt and Sbarbaro 
[4] implemented a nonlinear IMC based on two neural networks: a neural network 
is trained to learn the feed-forward dynamics of the plant and a separate neural 
network is used to learn the inverse dynamics of the plant which is employed as a 
nonlinear controller. They also investigated invertability conditions for a class of 
nonlinear dynamical systems. Nahas et al. [5] proposed two alternative 
implementations of the nonlinear IMC strategy: one is based on the plant model 
and the other is based on a model of the inverse plant dynamics. Lightbody and 
Irwin [6] proposed a nonlinear IMC strategy, that utilized a nonlinear neural model 
of the plant to generate parameter estimates over the nonlinear operating region for 
an adaptive linear internal model, without the problems associated with the 
recursive parameter identification algorithms. In this paper it is suggested using an 
approximate model (NARMA-L2) within the IMC strategy that will attain specific 
benefits towards a systematic engineering design procedure for neural control 
systems. 

The paper is structured as follows. Section 2 gives an overview of using feed­
forward neural networks to learn to act as input-output models. The NARMA-L2 
model used in this study is also shown in Section 2. The specific use of this model 
within the IMC framework is demonstrated in Section 3. Finally, simulation results 
are presented in Section 4. 

NEURAL NETWORK MODELING OF DYNAMICAL SYSTEMS 

It is well known that the design of effective analog or digital controllers 
depends very heavily on how well we know the dynamics of the controlled plant 
(process). Recently there has been a lot of research into the approximation 
properties of multi-layered neural networks. It has been proved that a continuous 
function can be arbitrarily well approximated by a feed-forward network with only 

246 



A Neural Controller Using Imc Strategy 

a single internal hidden layer, where each unit in the hidden layer has a continuous 
sigmoidal nonlinearity [7]. The apparent ability of universal approximation by 
multi-layered neural networks is of interest as it would be very useful in several 
applications including system identification and control. 

Process Input-Output Models 

General nonlinear input-output behavior can be well approximated by a 
NARMA (Nonlinear AutoRegressive Moving Average) model, which can be 
expressed as: 

y P ( k + 1) = Fb P ( k ), y P ( k - 1 ), ... , y P ( k - n + 1 ), u ( k ), 

u(k- 1), ... , u(k- n + 1)] 

Here, n is the order of the system. Thus, the system output (yp) at time instant k+ 1 
depends (in the sense defined by nonlinear map F ) on the past inputs and outputs 
[8,9]. Then F in (1) can be realized by a feed-forward neural network, resulting in 
the identification model ofthe form: 

y m ( k + 1 ) = F[ y p ( k ), y p ( k - 1 ), ... , y p ( k - n + 1 ), u ( k ), 

u ( k - 1 ), ... , u ( k - n + 1 )] 

Where Ym is the output of the neural network model, and F represents the 
nonlinear input-output map of the network (the approximation of F). 

The availability of a NARMA model for a nonlinear plant does not 
automatically imply a method of determining the control input to track a desired 
output. This is because of the nonlinear dependence of the output on the input. 
Narendra and Mukhopadhyay in their paper [10], have proposed two approximate 
input-output models (referred to by Narendra as NARMA-L1 and NARMA-L2) 
derived from the NARMA model, in which the control input appears linearly. This 
makes the control problem tractable as in the linear case, since u(k) is merely the 
ratio of two time-functions. The equations for the two proposed nonlinear models 
are given below. 
NARMA-Ll model: 

Yp(k + 1) = fo[Yp(k),yp(k -1), ... , Yp(k- n + 1)] 

n-1 
+ L KO;[Yp(k),yp(k -1), ... , Yp(k- n +1)] ·u(k- i) 

i=O 
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NARMA-L2 model: 

y P (k + 1) = f[y P (k), ... , y P (k- n + 1), u(k -1), ... , u(k- n + 1)] 

+ g[y P (k), ... , y P (k- n + 1), u(k -1), ... , u(k- n + 1)] ·u(k) 

If the NARMA-L1 model is used to approximate a given plant, (n+ 1) networks 
are needed to approximate the functions / 0 and go;(i = 0,1, ... , n -1). Each of the 

functions is scalar-valued and has n arguments y P (k), y P (k - 1), ... , y P (k - n + 1) . In 

contrast to this, the NARMA-L2 model requires only two neural networks to 
approximate the functions f and g. Each ofthe functions, however, has (2n -1) 
inputs. From a practical standpoint, the NARMA-L2 model is simpler to be 
realized than the NARMA-L1 model, and thus NARMA-L2 model will be used in 
this paper. In fact, NARMA-L2 model was used previously by F. C. Chen [ 11 ], but 
the mathematical derivation and the conditions under which this model can be used 
with confidence in a control problem have been proposed by Narendra and 
Mukhopadhyay [10]. 

The identification procedure using a feed-forward neural network is quite 
straightforward. At each instant of time, the past n inputs and the past n outputs of 
the system (altogether 2n) are fed into the neural network (Fig. 1). The network's 
output is compared with the next observation of the plant's output to yield the 
prediction error: 

e(k + 1) = y p (k + 1)- Ym (k + 1) 

The weights of the network are then adjusted using back-propagation training 
algorithm to minimize the sum of the squared errors: 

E = t f (e(i)(k + 1)) 2 = t f (y /i)(k + 1)- Ym (i)(k + 1)) 2 

i=l i=l 

where Q is the number of training points in the training set. Note that since the 
learning is performed off-line, the speed ofthe learning algorithm will not be an 
ISSUe. 

Once the identification is achieved, two modes of operation are possible: 

• Series-Parallel Mode: In this mode, the outputs of the actual system are 
used as inputs to the model (the network has no feedback). This scheme can 
be used only in conjunction with the plant. It can also generate only one step 
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ahead prediction. The architecture is identical to the one used for 
identification (Fig. 1). 

• Parallel Mode: If we assume that after a suitable training period the network 
gives a good representation of the plant (i.e. Ym? yp), the network output itself (and 
its delayed values) can be fed-back and used as a part of the network input 
(resulting in a recurrent network). In this way the network can be used 
independently of the plant. The parallel mode must be used if more than one step 
ahead prediction is required, or to achieve certain performance (as will be seen in 
Section 3). 

u(k) 
Plant 

Fig. 1. NARMA-L2 identification model. 

Where 

+ e(k+J) 

Ym{k+ J} 

Training 
Mechanism 

X = [u (k - 1). · · u (k - n +I) y p (k - n + 1). · · y p (k - 1) y p (k) r 
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Network Architecture 

The multi-layered feed-forward neural network shown in Fig. 2 is composed of 
many interconnected processing units called neurons or nodes. As can be seen the 
net consists of three layers: an input layer (buffer layer), a single hidden layer with 
biases, and an unbiased linear output layer. The neurons in the input layer simply 
store the scaled input values. The hidden layer carries out two calculations. To 
explain these calculations, consider the general j'th neuron in the hidden layer 
shown in Fig. 3. 

The inputs to this neuron consists of an ni-dimensional vector X (ni is the 
number of the input nodes) and a bias with its value as 1. Each of the inputs has a 
weight VJ.I associated with it. The first calculation within the neuron consists of 
calculating the weighted sum neth1 of the inputs as: 

ni 
neth j = L v j,l · Xf + v j,ni +1 

l=I 

Next the output of the neuron h, is calculated as the hyperbolic tangent of neth1 as: 

hi = tanh( neth i ) 

Once the outputs of, the hidden layer are calculated, they are passed to the output 
layer. In the output layer, a single linear neuron is used to calculate the weighted 
sum neto of its inputs (the output of the hidden layer) as in (9). 

nh 

(7) 

(8) 

neto L w j · h j (9) 
j = 1 

where nh is the number of the hidden neurons (nodes) and w1 is the weight between 
the hidden neuron h1 and the output neuron . The single linear neuron, then, passes 
the sum neto through a linear function of slope 1 (another slope can be used to 
scale the output) as: 

y=neto 

Using such a network, each of ·the functions g[.] and./[.] in equation (4) can be 

approximated separately by g[.J and f[.) respectively, where X represents the 

input vector of the networks N1 and N2 (the argument of kf.] and f[.] ) as shown 
in Fig.1. 
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Inputs 

Input 
Layer 

V: Weight matrix. 
~: Weight vector. 
L: Denotes linear node. 

Hidden 
Layer 

H: Denotes nonlinear node with hyperbolic tangent function 

Output 
Layer 

Fig. 2. A multi-layered fced-fonvard neural network 

Fig. 3. Neuron j in the hidden layer 

A suitably trained network has the ability to generalize; it provides the right 
outputs in response to inputs not appearing in the training set. An oversized 
network is expected to model the process with poor generalization capability, 
whereas the undersized network will not be able to represent the process dynamics 
faithfully. Although some results are available for predicting the optimal number of 
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nonlinear hidden neurons [1], the approach proposed in [5,12] is easier to apply, 
this is because of the special structure of NARMA-L2 model. This approach 
attempts to obtain a model with the best generalization capability by generating the 
simplest model that is compatible with the training (learning) data set. 

CONTROLLER DESIGN 

The Concept of the IMC Strategy 

The IMC strategy is now well known and has been widely applied to process 
control. For linear systems, which are described by transfer function models, the 
IMC represents a powerful controller design strategy [13]. The basic linear IMC 
structure is shown in Fig. 11, where P(z), M(z), C(z), and F(z) represents the plant, 
the plant model, the controller, and the robustness filter respectively. 

Disturbanced (z) 

Set-point 

Ysp(Z) 

Fig. 4. Linear IMC structure 

Initially, neglecting the robustness filter F(z), and referring to the block diagram of 
Fig.3 the following relationships can be obtained: 

y p ( z) 

d ( z) 

1- C (z)M (z) 

1 + C (z)(P {z)- M (z)) 

y p (z) C (z)P (z) 

y sp ( z ) = 1 + C ( z ) (P ( z ) - M ( z ) ) 

(II) 

(12) 

From (11) and (12), it is apparent that if the model is perfect (M(z)=P(z)) then 
the necessary and sufficient conditions to ensure the stability of the overall 
structure is that both the controller and the plant are stable. Likewise, perfect 
modeling amounts to feed-forward control for set-point tracking, with feedback 
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control for disturbance rejection, and hence, the IMC strategy provides a suitable design 
structure for the development of robust control techniques. 

An important step towards a practically applicable nonlinear feedback controller 
design technique was achieved by proving that the attractive properties of the IMC, 
as studied in linear control system design, carry over to the general nonlinear case. 
Input-output operators were used in [14] to show that nonlinear IMC technique 
satisfies the same stability, perfect control, and zero-offset properties as linear 
IMC. Moreover, since disturbances were treated as modeling errors, no explicit 
techniques were proposed to incorporate measured disturbances in a feed-forward I 
feedback control scheme. For the general nonlinear IMC, its important 
characteristics are summarized in the following properties [14]: 

• Property 1 (Stability): Assume that C and Pare input-output stable and 
that a perfect model of the plant is available, i.e., M=P. Then the closed­
loop system is input-output-stable. 

• Property 2 (Perfect Control): Assume that the right inverse of the model 
operator M 1 exists, that C=M1

, and that the closed-loop system is input­
output-stable with this controller, then the control will be perfect, i.e., YP = 
Ysp· 

• Property 3 (Zero Offset): Assume that the right inverse of the steady..:.state 

model operator M ~ 1 exists, that the controller satisfies c"" = M.;;; 1 , and that 

the closed-loop system is input-output-stable with this controller, then offset 
free control is attained for asymptotically constant inputs. 

Nonlinear IMC Implementation Using Neural Networks 

Existing approaches 
The idea of using neural networks for nonlinear IMC has been considered by a 

number of researchers [3,4,5,6]. The tendency was to employ a NARMA model of 
the plant. Moreover, it has been verified in [5] that offset-free performance cannot 
be achieved if the controller design is based on a series-parallel model ofthe plant 
and it is only the parallel model that can provide offset-free control. Thus for a 
NARMA model, the series-parallel model in (2) is replaced by its parallel form as 
in (13). 

Ym (k + 1) = F[ym (k), Ym (k- 1), ... , Ym (k- n + 1), u (k), 

u'(k - 1), ... , u (k - n + 1)] 

253 

(13) 



Abdul-lateef and Mirza 

To obtain perfect control, the controller C must be chosen as the inverse of the 
internal model M (see Property 2), thus, a neural network may form a nonlinear 
approximation to the inverse ofthe previously trained neural plant model of(13) 
[4]. Assuming that the desired model output is Ydes (k), the general nonlinear 
inverse of the model (13) is defined in (14) 

u(k) = G [Ydes (k +I), Ym (k), Ym (k -I), ... , Ym (k- n +I) 

u(k- I), ... , u(k- n +I)] 
(14) 

Assuming that the closed-loop system under neural IMC was stable (see Fig. 5), 
there would then be zero offset for asymptotically constant set-point Ysp and 
disturbances (which are treated here as modeling errors), if the control law inverts 
the steady-state gain of the model exactly. 

Alternatively, using the plant model of (13), iterative methods can be used to 
calculate the inverse of the model at each sample time [4,5]. 

d(k) 

Fig. 5. IMC implemented using neural network model and its neural network 
inverse as a controller 

Likewise, in [5] another implementation of the IMC was proposed, in which the 
control law was based on a model of the inverse process dynamics, which was 
identified directly without the need of the process model of (13). The main 
advantage of directly identifying the inverse dynamics of the process is that the 
control law can be implemented without on-line inversion of the neural plant 
model. 

Finally in [6] a novel nonlinear IMC scheme was proposed, which utilized 
adaptive linear transfer functions for both plant model and controller, with the 
parameters of each determined at each sample time by linearization of a previously 
trained neural model of the plant. 
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Nonlinear IMC implementation based on an approximate NARMA model 
(NARMA-L2) 

The neural network that is obtained from the identification structure of Fig. 1 is 
of dual use: It can be used as a feed-forward model of the plant as in (15), likewise 
if g[.] in (15) is sign definite in the operating region, the network can be used as 

the inverse of the plant model as in (16), where Ym(k+ 1) is replaced by the desired 
model outputydes(k+ 1) 

Ym (k + 1) = f[y P (k), ... , y p (k- n + 1),u(k -1), ... , u(k- n + 1)] 

+ g[y P (k), ... , Yp (k- n + 1), u(k -1), ... , u(k- n + 1)] · u(k) 
(15) 

Ydes (k + 1)- }[yp (k), ... , Yp (k- n + 1), u(k), ... , u(k- n + 1)) 
u(k) = • 

g[y p (k), ... , y p (k- n + 1),u(k), ... , u(k- n + 1)] 
(16) 

The sign definite of g[.] in the operating region (the region of interest) ensures 

the uniqueness of the plant inverse at that operating region [10]. Now, by using 
(15) as the model of the plant and (16) as the inverse of the model (the controller), 
and after converting (15) and (16) to their parallel form, the IMC structure of Fig. 5 
can be implemented directly. In [4] two neural networks were used to implement 
the same structure of Fig. 5. Moreover, if the model as in (15) is used, (16) will be 
the exact inverse of the model, which is very important to achieve perfect control 
(see Property 2). This is, of course, different from the approaches in [4] and [5] in 
which numerical methods were used on-line to enhance the accuracy of the 
approximated inverse of the model at each sample time. 

For the sake of completeness, a time delay, td, which is between the input and 
the output of the model may be assumed, then the parallel form of(15) with this 
time delay can be written as in (17). 

Ym(k + 1) = f[ym(k), ... ,ym(k -n +1),u(k -td -1), ... ,u(k -td -n +1)] 

+ g[ym (k), ... ,ym (k -n + 1), u(k- td -1), ... ,u(k- td- n + 1)]· u(k- td) 
(17) 

The parallel model in ( 17) can be written in the equivalent prediction form: 

Ym(k+td+ 1) = f[y111 (k+td), ... ,ym(k+td-n+ 1),u(k-1), ... ,u(k-n+ 1)] 

+ i[ym(k +td), ... ,ym(k +td -n+ 1),u(k -1), ... ,u(k -n+ 1)]·u(k) 
(18) 

If g[.] in (18) is sign definite in the operating region, the exact inverse ofthe model 

will be readily computed for the current input u(k) as in (19) 

u(k) = Ym(k + t~ + 1)- f[Ym(k + td), ... ,ym(k + td- n + 1),u(k -1), ... ,u(k- n + 1)] (19) 
g(ym(k + td), ... ,ym(k +td- n + 1),u(k -1), ... ,u(k- n + 1)) 
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It is noticed that the future model output Ym(k+td+ 1) is a function of u(k) and 
thus cannot be used in the control law. However, an implementable controller can 
be obtained by replacing this output with the filter output v (k) as follows: 

Ym (k + td + 1) = v(k) (20) 

Using (20), (19) can be written as: 

u(k) = v(k)A- f[Ym (k + td), ... , Ym (k + td- n + 1), u(k -1), ... , u(k- n + 1)] (
21

) 
g[ym (k + td), ... , Ym (k + td - n + 1), u(k- 1), ... , u(k- n + 1)] 

The most important features that the presence of the filter imparts to the system 
are the following: 

• Introducing robustness in the IMC structure in the face of modeling 
errors. 

• Projecting the signal &(k) (see Fig. 5) into the appropriate input space for 
the controller. 

• Smoothing out the noisy and/or rapidly changing signals in order to 
reduce the transient response of the IMC controller, in other words, to avoid 
controller ringing [15]. 

It has been shown in [14] that, a simple first order filter as in (22) gives satisfactory 
results in terms of robustness and performance. 

F(z) = 1-a 

1 -1 -az 
where 

Then from Fig. 5 we have: 

I- a 
u ( z) = ----~1 ( y sp ( z) - d ( z )) 

I- az 
where 

d(z)= Yp(z)-ym(Z) 

(0 sa< 1) (22) 

(23) 

For a perfect model d(z)=O, then by using (20) with Ym (k + td + 1) = YP (k + td 
+ 1), the following closed-loop transfer function between the plant output and the 
set-point is obtained: 
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Yp(z) = z-(td+1) 1-a 

Ysp (z) 1- az-1 
(24) 

The filter tuning parameter a. can be tuned to provide a compromise between 
performance and robustness. For a perfect model, the effect of the tuning parameter 
a. on the closed-loop response is particularly simple. Small values of a. result in 
vigorous response, while large values cause sluggish response. The robustness of 
the proposed IMC strategy will be investigated in more detail in Section 4. 

The filter equation in (23) can be written as: 

u(k) = u(k -1) + (1- a){lYsp (k)- d(k)]- u(k -1) } (25) 

Using equation (20), (25) can be rewritten as: 

u(k) = u(k -1) + (1-a){lYsp (k)- d(k)]- Ym (k +td) } (26) 

The signal Ym(k+td) represents the prediction of the plant output td sampling 
periods ahead which can be obtained from the prediction model in (18) which 
predicts the delayed effect that the manipulated variable u(k) will have on the plant 
output yp(k). This prediction is used to provide a dead-time compensator in the 
form of Smith predictor [1] and it is possible oply if we have a good model of the 
plant. In what follows td is assumed to be perfectly known. Now, by using (20) and 
(23), (26) can be written as: 

u(k) =a ·U(k -1)+ (1-a)·u(k- td -1)+(1- a)~sp (k)- y P (k) (27) 

And by taking the z-transform of (27) we get: 

1-a ( } 
v(z)= -1 -td-I \Ysp(Z)-Yp(Z) 

1- az - (1- a )z 

(28) 

Using (28) the nonlinear IMC can be reconstructed in a classical feedback 
structure (see Fig. 6). In fact any conventional feedback controller can be 
restructured to yield IMC. Furthermore, any IMC can be put into the conventional 
feedback form [13]. 
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Filter Controlle Plant 

+ 

Fig. 6. Nonlinear IMC in its conventional feedback form 

SIMULATION EXAMPLES 

Example 1 

The plant to be controlled is covered by the difference equation: 

-0.9yp(k)+u(k) 
Yp(k+l) = 

2 l+yp (k) 
(29) 

This plant has been adopted from [16]. Fig. 7 shows the open-loop step response 
with u(k)=0.8. The step response of the plant is very oscillatory for the low 
amplitude input and shows limit cycle oscillation for u(k) > 0.6. 

0.8 .----.,.-.-,-----.,---,1----.-,---, 

0.6 

oL_---~'---1~---~'---1~--~ 
0 20 40 60 80 100 

Fig. 7. Plant response with step input by amplitude 0.8 
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To identify the plant dynamics, a series-parallel identification structure as that 
in Fig. 1 has been used. The model is described by: 

Ym (k + 1) = Nl[y p (k)] · u(k) + N2[y P (k)] (30) 

where N1[.] and N2[.] are multi-layered neural networks which approximate g[.] 
and f [.]of equation (4) respectively. The initial guess ofthe number ofthe hidden 
nodes was 3 for each network. 

Using a random input sequence {u (k)} with I u(k) I~ 1 a training set of300 
patterns has been developed. During the training phase, the training set has been 
presented to the network many times. A training event corresponding to a single 
pass over the entire training set is called a training epoch or training cycle. 
However, for this example after 1600 epochs the Average System Error (ASE) 
computed for the latest epoch, which is described by (31 ), was 0 .I x 1 o-s. 

(31) 

where Q = total number of patterns. After that, the training has been continued up 
to 5000 epochs, but failed to decrease the ASE any further. Depending on this 
perfect model, the chosen architecture has been adopted (3 hidden nodes for each 
of N1 and N2) and a parallel model of the form: 

(32) 

has been developed from the series-parallel model of (30) simply by replacing the 
plant output yp(k) by the model output Ym (k). Fig. 8 compares the time response of 
the parallel model of equation (32) with the actual plant output for the input u(k) 
generated as the sum of two sinusoids, as in (33). 

u(k) = 0.5sin( 
2

.nk) +0.5sin( 
2

.nk) 
25 10 

(33) 
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0.5 

0 

-0.5 L_ __ _L__ _ _..I___.__ __ _,_ __ __,_ __ __, ___ ..___....:....._....._ __ .....J 

0 10 20 30 40 50 60 70 80 

Plant response 
model response 

k 

Fig.8. The response of the plant (yp) and of the parallel NARMA-L2 model 
(ym) 

Although the input signal used differs significantly from that used to generate 
the training data, the parallel NARMA-L2 model of equation (32) performs 
excellently in such a way that the output ofthe plant as well as the output of the 
model plotted in Fig. 8 are seen to be indistinguishable. Fig. 9 shows a plot of the 
coefficient of u (k) (g[.]) for the parallel NARMA-L2 model as a function of time 
with values computed using the corresponding network N1 [ym(k)] when a random 
input sequence { u(k)} with I u (k) I ~ 1 has been applied to the model. As shown in 
Fig. 9, g[.] is sign definite in the region of interest. This means that the plant model 

is invertable, or in other words, the model output Ym (k+ J) is monotonic with 
respect to u(k). Since ·the plant is invertable, the IMC strategy using the 
approximate NARMA-L2 model can be applied directly. 

To make some study on the role of the tuning parameter a, Fig. 10 (a and b) 
shows the plant responses yp(k) superimposed on the reference signal (set-point) 
Ysp(k) for two different values of a. For a= 0.8 the response yp(k) was sluggish, see 
Fig. lOa, it can be seen that the rate of change ofthe response is slow. Faster 
response can be obtained by decreasing the value of a as shown in Fig. IO.b, where 
a = 0.34. This will ensure excellent set-point tracking without overshoot and with 
zero offset. 
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Fig. 9. Plots of the plant output and the estimated plant Jacobian 
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Fig. 10. Example 1: Set-point tracking for different values of a: (a) a=O.S, and 
(b) a=0.34.aa 

Example 2 

This example shows the performance of the proposed IMC on the same plant of 

example 1 but with time delay of 2Ts (td = 2), where Ts is the sampling time. The plant is 

represented by: 

-0.9yp(k) +u(k -td) 
Yp(k+l)= 

2 I+ Yp (k) 
(34) 

The network used to model the plant in Example. I can be used here again simply by 

replacing u(k), of Example. I, by u(k-td), this is because the nonlinear mapping between the 

inputs and the output of the network is still the same. 

The closed-loop control structure will be identical to that ofExarnple.l except 
the robustness filter. Here the filter will have the following pulse transfer function 
of the form: 

1-a [ ] 
u(z) = -1 -td-1 Ysp(z)- Yp(z) 

1-az -(1-a)z 
(35) 
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where td= 2. 

Fig. 11 shows the time response of the plant under the proposed IMC strategy 
superimposed on the reference set-point signal for a= 0.34. 
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Fig. 11. Set-point tracking with a=0.34 
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Consider a Continuous Stirred Tank Reactor (CSTR) in which an irreversible 
exothermic reaction A -+ B takes place. The heat of reaction is removed by a 
coolant medium that flows through a jacket around the reactor (Fig. 12). As is 
known from the analysis of the CSTR system, the CSTR is at steady state when the 
heat produced by the reaction equals to the heat removed by the coolant. This 
requirement yields three steady states, two stable and one unstable. 

The process model consists of two nonlinear ordinary differential equations [5]: 
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(36) 

where C a (t) is the product (effluent) concentration of component A, T(t) is the 

reactor temperature, q is the feed flow-rate (assumed to be constant),and qc(t) is 
the coolant flow-rate. The remaining model parameters are defined in nominal 
operating conditions as shown in the Appendix . The operating point in the 
Appendix corresponds to the lower stable state. 

The objective is to control C a (t), this can be done by introducing a coolant 
flow-rate qc(t) (the manipulated variable), the temperature can be varied and hence 
the product concentration controlled [5,15]. To illustrate the problems involved in 
controlling the concentration C a (t), a traditional PID controller was first used. The 
digital approximation for the PID controller is given in (37). 

Cafi q, T1 
Reactant 

Ca(t), q, T(t) 
L ________ __=:=;:::==~ Product 

Fig. 12. CSTR with cooling jacket 
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qc(k)=Kc s(k)+----: L&(l)+s(k) +-(&(k)-&(k-1)) +qss 
{ 

Ts[k-1 ) rrJ } -
D l,JJ Ts 

(37) 

where Kc. ti, rd, and Ts are the gain, integral time, derivative time, and sampling 
time respectively. s(k) is the performance error (i.e., s(k) = Ysp(k) - Ca(k)) and 
finally qss is the controller's bias signal (i.e., its actuating signal when c = 0), and 
for the CSTR it is the coolant flow-rate at steady state qss = 103.41 Vmin. 

The tuning method of Cohen and Coon [15] was used to tune the PID 
controller. The plant response under the PID controller for set-point tracking was 
as shown in Fig. 13. As expected, the PID controller performs well in a limited 
range, this range is approximately between 0.06 moVI and 0.08 moVl where the 
controller was initially tuned. But the performance deteriorates outside this range. 
This reflects the nature of nonlinearity present within the plant, with the degree of 
damping varying considerably over the set-point range. Likewise, it is a good 
indication that the conventional linear controllers cannot cope with complexities in 
the CSTR process. 

0_05 L__ _ _J_ __ l_ _ __j_ __ _l_ _ ____J __ ___j_ __ L__ _ __,__ _ ___, 

0 100 200 300 400 500 600 700 800 900 

Plant output 
set-point 

k; time(sampling period is o_ 1 min) 

Fig. 13. The set-point tracking performance for the PID controller with the 
following tuning parameters: Kc =600 12/(min mol), ri =0.946 min, and 
n/=0.0375 min. 
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As the neural networks are trained off-line, a selection of input-output training 
patterns is needed to provide enough information about the plant to be modeled. 
This can be achieved by injecting a sufficiently rich input signal to excite all 
process modes of interest while also ensuring that the training patterns adequately 
cover the specified operating region. The training data has been generated by 
forcing the dynamic equations with a series of arbitrary step input changes with 
sampling period of 0.1 min. The signals entering to or emitting from the network 
(all the elements of the training data) have been normalized to lie within -1 and + 1 
in order to overcome numerical problems that could possibly arise otherwise. 

Using the identification structure of Fig. 1 with n = 3 (plant order assumed to be 
known), a series-parallel NARMA-L2 model of the plant that has the form of 
(38): 

Ca(k+ 1) = N1[Ca(k),Ca(k-1),Ca(k- 2),qc(k-1),qc(k-2)]· qc(k) 

+ N2[Ca(k),Ca(k-1),Ca(k-2),qc(k-1),qc(k-2)] 
(38) 

has to be identified. Many experiments have been made in order to obtain the 
optimum structure of the neural network that can fairly approximate the plant 
dynamics. It has been found that the neural network with 6 hidden nodes (for each 
of Nl and N2) gives fairly good generalization capabilities (see Fig. 14). 

The first step in the design of the IMC is to check the existence of the inverse of 
the plant model. This can be done easily by checking the sign of the plant Jacobian 
in the region of interest. Fig. 15 shows the coefficient of qc(k) ( N1[.] =plant 
Jacobian) as a function of time for the parallel NARMA-L2 model of (39) where 
qc(k) is the series of step changes used in generating the training data. 

Ca(k + 1) = N1~a(k),Ca(k-1),Ca(k- 2),qc(k-1),qc(k -2)].qc(k) 

+ N2~a (k),Ca (k -1),Ca (k- 2),qc (k -1),qc (k- 2)) (39) 

Since the plant Jacobian (N1[.]) is sign definite in the region of interest, the plant 
model is invertable and a controller ofthe form of(40) can be implemented. 

" " " 
%(k) li._k)-N~Ca(k),Ca(k -I),Ca(k-2),qc(k -I),qc(k-2)] 

Nlf.Ca(k),Ca(k-I),Ca(k-2),%(k-I),%(k-2)] 
(40) 

wherev v(k) is the output of the robustness filter. 
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Fig. 14.The performance of the parallel model with the testing set 
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Fig. 15. The estimated plant Jacobian 
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Each experiment to be made has been conducted over 900 samples using a 
sampling time of 0.1 min., which resulted in 90 min. duration. The filter was 
initially tuned with a= 0.5. Fig. 16.a shows the plant response and Fig. 16.b shows 
the corresponding control signal. As can be seen from Fig. 16.a, large overshoots 
have occurred for set-points greater than 0.09 mol/1. however, the response for set­
points less than 0.09 mol/1 is very good. It can also be observed that for each step 
change in the set-point, sharp fluctuations have occurred in the controller output 
(see Fig. 16.b), which results in very fast plant response. It can be observed, also, 
that the control signals settle generally within a few samples. It is important to note 
that prolonged adverse fluctuations of the control signals could damage the 
actuator. The large overshoots observed in Fig. 16.a were caused by the modeling 
errors. Fortunately the effect of mismodeling can be decreased by choosing 
relatively large a for the robustness filter, or/and by adding a filter at the set-point 
Ysp(k). To illustrate the effect of a first order set-point filter (with a tuning 
parametery) on the plant response and more importantly on the controller 
response, compare Fig. 16 with Fig. 17a. Fig. 17b shows the plant response and the 
corresponding control signal fory = 0.6 and a.= 0.5. 

It can be observed that the controller can track almost precisely over the nonlinear 
operating region, moreover, lower control moves (as compared with the pervious 
case) are required. From these Figures (10 and 11), it is obvious that decreasing 
the pole of the set-point filter (r) causes large control moves and consequently 
faster set-point tracking. Generally speaking, excessive control valve (the actuator 
for the CSTR) movement is unacceptable in industrial practice, and smooth 
controller outputs prolong actuator life. Thus tuning r depends mainly on practical 
limitations. 
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Fig. 16. Example 3: (a) the set-point tracking performance, (b) the 

corresponding control signal for a = 0.5 
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Fig. 17 (a) the set-point tracking performance, (b) the corresponding control 
signal for a = 0.5 and r = 0.6 
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The second set of experiments has been carried out with the purpose of 
studying the ability of the proposed controller in rejecting unmeasured disturbances 
(for CSTR the most common disturbances are in Caf, q, Tj). In order to evaluate the 
ability of the proposed controller in rejecting unmeasured disturbances, it is 
necessary to compare it with others used in existing approaches, thus, the PID 
controller was chosen for this purpose and to ensure identical comparison between 
the two controllers, the same design and controller parameters were used for the 
IMC and the PID controllers as in the first set of experiments. The effects of the 
disturbance on the two controllers are shown as in Fig. 18, when an artificial step 
change in the feed temperature T1 ofvalue 5K was added to the process at the 100 
sampling instant. It can be observed that the proposed neural controller performs 
well with the ability to recover quickly from the effects of the positive step change 
in Tr. also it can be observed that the control moves for the two controllers are 
similar. Improved disturbance rejection can be obtained by decreasing the tuning 
parameter a of the robustness filter. From the above discussion, it is clear that there 
is a trade off between robustness and performance, if we want good performance, 
the robustness must be sacrificed, and vice versa. 
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Fig. 18. Disturbance rejection performance under IMC controller with a = 0.5 and 
under PID controller with Kc =600 12/(min mol), ri =0.946 min, and n/=0.0375 min. 

CONCLUSIONS 

An IMC strategy based on neural NARMA-L2 model has been designed and 
applied successfully to a number of nonlinear systems with and without time delay. 
The proposed strategy has shown the ability to out-perform conventional PID 
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controller, for set-point tracking and disturbance rejection, as it was clear when 
applied to the CSTR plant. 

Under IMC controller, it is easy for an operator to determine the bandwidth 
suitable for a particular application by choosing an appropriate value for the 
robustness filter tuning parameter (a). A low bandwidth gives a slow response, 
small control signals, and low sensitivity to modeling errors and disturbances. A 
high bandwidth gives a fu.st response. However, the control action will be large and 
the system will be sensitive to modeling errors and disturbances. 

Since the proposed controller is fixed, a specialized neural controller chip may 
be trained as a stand-alone controller. 

If an adaptive controller is desired, with simultaneous on-line training of the 
feed-forward model M, this control procedure may be made fully adaptive, without 
the problems associated with training a controller embedded within a control loop. 

Using a feed-forward model of the plant in the form ofNARMA-L2, an exact 

inverse of the model can be computed directly without the need to numerical 
methods that are used on-line in each sample time to compute an approximate 
model inverse. It should be noted that the exact inverse is very important to achieve 
offset-free performance. 

Using neural NARMA-L2 model as a nonlinear model of the plant provides a 
simple check on the model invertability which appears to be of critical importance. 
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APPENDIX 

Nominal CSTR Operating Conditions 

Parameter Description Nominal Value 

q Process flow-rate 1001 min"1 

Cq~ Inlet feed concentration 1 molr1 

Tl Feed temperature 350K 
Tcf Inlet coolant temperature 350K 
Vol Reactor volume 100 I 
ha Heat transfer coefficient 7x105 cal min-1

. K 1 

ko Reaction rate constant 7.2x1010 min"1 

EIR Activation energy 9.95x103 K 
&l Heat of reaction -2x105 cal mor1 

p, Pc Liquid densities 1000 gr1 

c,. Cpc Specific heats 1 calg"1
• K 1 

qc Coolant flow-rate 103.411. min-I 
T Reactor temperature 440.2K 
Ca Product concentration 8.36x 10"2 mol r 1 

Note: 

Pr 
. vol 100/ 

ocess time constant =-= I min 
q 100/·min -I 
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