
Engineering Journal ofthe University of Qatar, Vol. 13,2000, pp.

A NEURAL CONTROLLER USING IMC STRATEGY

K. I. Abdul-lateef and K. B. Mirza
Deparbnent of Control and Computer Engineering

University of Technology
Baghdad, Iraq.

ABSTRACT

In this paper a nonlinear Internal Model Control (IMC) strategy based on a
modified NARMA model is proposed. The IMC controller consists of a
model inverse controller and a robustness filter with a single tuning
parameter. Under such a controller, the control quality and the robustness can
be influenced in a direct manner. From the input-output observation data of
the plant, a neural network is trained off-line using Back-Propagation
algorithm to emulate the feed-forward dynamics of the plant. This neural
plant model provides a simple check of the model invertability, which plays a
critical role in the IMC strategy. Using the same network used in the feed­
forward model of the plant, an exact model inverse is obtained directly
assuming invertability of the plant model. The exact inverse of the plant
model is very important to achieve offset-free performance. Simulation
examples demonstrate the simplicity of the design procedure and the good
performance characteristics of the proposed nonlinear IMC controller. The
examples show that the proposed controller is superior to conventional PID
controller and it can also be applied to systems having time delay.

INTRODUCTION

Model based control strategies for nonlinear processes usually require local
linearization and linear control design based on the linearized model. Since
reasonably accurate nonlinear models are available for a variety of processes,
control strategies in which the nonlinear process model serves as the basis for
controller design can be expected to yield significantly improved performance.
There are a number of nonlinear system identification techniques available,
however, neural networks offer some of the most versatile ways of modeling
nonlinear processes of a diverse nature [I].

Although many different neuro-controller architectures exist yet they have not
achieved wide spread acceptance in industrial applications. The lack of general
stability theory prevents their use in life-critical situations and slow training
algorithms can cause problems when using adaptive systems. Moreover, for real

245

Abdul-lateef and Mirza

applications of control theories, the control algorithm should be simple enough to
be implemented and to be understood. This explains why untill993, about 84% of
the control industry in Japan used the conventional PID controllers [2].

This paper aims at presenting a control algorithm which is simple to be
implemented and to be understood, furthermore, it has some desirable properties
such as robustness, flexibility, and coping with nonlinearities. One particular
control approach for which a well-understood framework exists for the structured
utilization of nonlinear plant models is the IMC strategy.

The idea of using neural networks for nonlinear IMC was considered for the
first time by Bhat and McAvoy [3]. However, they do not appear to have
implemented a neural network based nonlinear IMC controller. Hunt and Sbarbaro
[4] implemented a nonlinear IMC based on two neural networks: a neural network
is trained to learn the feed-forward dynamics of the plant and a separate neural
network is used to learn the inverse dynamics of the plant which is employed as a
nonlinear controller. They also investigated invertability conditions for a class of
nonlinear dynamical systems. Nahas et al. [5] proposed two alternative
implementations of the nonlinear IMC strategy: one is based on the plant model
and the other is based on a model of the inverse plant dynamics. Lightbody and
Irwin [6] proposed a nonlinear IMC strategy, that utilized a nonlinear neural model
of the plant to generate parameter estimates over the nonlinear operating region for
an adaptive linear internal model, without the problems associated with the
recursive parameter identification algorithms. In this paper it is suggested using an
approximate model (NARMA-L2) within the IMC strategy that will attain specific
benefits towards a systematic engineering design procedure for neural control
systems.

The paper is structured as follows. Section 2 gives an overview of using feed­
forward neural networks to learn to act as input-output models. The NARMA-L2
model used in this study is also shown in Section 2. The specific use of this model
within the IMC framework is demonstrated in Section 3. Finally, simulation results
are presented in Section 4.

NEURAL NETWORK MODELING OF DYNAMICAL SYSTEMS

It is well known that the design of effective analog or digital controllers
depends very heavily on how well we know the dynamics of the controlled plant
(process). Recently there has been a lot of research into the approximation
properties of multi-layered neural networks. It has been proved that a continuous
function can be arbitrarily well approximated by a feed-forward network with only

246

A Neural Controller Using Imc Strategy

a single internal hidden layer, where each unit in the hidden layer has a continuous
sigmoidal nonlinearity [7]. The apparent ability of universal approximation by
multi-layered neural networks is of interest as it would be very useful in several
applications including system identification and control.

Process Input-Output Models

General nonlinear input-output behavior can be well approximated by a
NARMA (Nonlinear AutoRegressive Moving Average) model, which can be
expressed as:

y P (k + 1) = Fb P (k), y P (k - 1), ... , y P (k - n + 1), u (k),

u(k- 1), ... , u(k- n + 1)]

Here, n is the order of the system. Thus, the system output (yp) at time instant k+ 1
depends (in the sense defined by nonlinear map F) on the past inputs and outputs
[8,9]. Then F in (1) can be realized by a feed-forward neural network, resulting in
the identification model ofthe form:

y m (k + 1) = F[y p (k), y p (k - 1), ... , y p (k - n + 1), u (k),

u (k - 1), ... , u (k - n + 1)]

Where Ym is the output of the neural network model, and F represents the
nonlinear input-output map of the network (the approximation of F).

The availability of a NARMA model for a nonlinear plant does not
automatically imply a method of determining the control input to track a desired
output. This is because of the nonlinear dependence of the output on the input.
Narendra and Mukhopadhyay in their paper [10], have proposed two approximate
input-output models (referred to by Narendra as NARMA-L1 and NARMA-L2)
derived from the NARMA model, in which the control input appears linearly. This
makes the control problem tractable as in the linear case, since u(k) is merely the
ratio of two time-functions. The equations for the two proposed nonlinear models
are given below.
NARMA-Ll model:

Yp(k + 1) = fo[Yp(k),yp(k -1), ... , Yp(k- n + 1)]

n-1
+ L KO;[Yp(k),yp(k -1), ... , Yp(k- n +1)] ·u(k- i)

i=O

247

(1)

(2)

(3)

Abdul-lateef and Mirza

NARMA-L2 model:

y P (k + 1) = f[y P (k), ... , y P (k- n + 1), u(k -1), ... , u(k- n + 1)]

+ g[y P (k), ... , y P (k- n + 1), u(k -1), ... , u(k- n + 1)] ·u(k)

If the NARMA-L1 model is used to approximate a given plant, (n+ 1) networks
are needed to approximate the functions / 0 and go;(i = 0,1, ... , n -1). Each of the

functions is scalar-valued and has n arguments y P (k), y P (k - 1), ... , y P (k - n + 1) . In

contrast to this, the NARMA-L2 model requires only two neural networks to
approximate the functions f and g. Each ofthe functions, however, has (2n -1)
inputs. From a practical standpoint, the NARMA-L2 model is simpler to be
realized than the NARMA-L1 model, and thus NARMA-L2 model will be used in
this paper. In fact, NARMA-L2 model was used previously by F. C. Chen [11], but
the mathematical derivation and the conditions under which this model can be used
with confidence in a control problem have been proposed by Narendra and
Mukhopadhyay [10].

The identification procedure using a feed-forward neural network is quite
straightforward. At each instant of time, the past n inputs and the past n outputs of
the system (altogether 2n) are fed into the neural network (Fig. 1). The network's
output is compared with the next observation of the plant's output to yield the
prediction error:

e(k + 1) = y p (k + 1)- Ym (k + 1)

The weights of the network are then adjusted using back-propagation training
algorithm to minimize the sum of the squared errors:

E = t f (e(i)(k + 1)) 2 = t f (y /i)(k + 1)- Ym (i)(k + 1)) 2

i=l i=l

where Q is the number of training points in the training set. Note that since the
learning is performed off-line, the speed ofthe learning algorithm will not be an
ISSUe.

Once the identification is achieved, two modes of operation are possible:

• Series-Parallel Mode: In this mode, the outputs of the actual system are
used as inputs to the model (the network has no feedback). This scheme can
be used only in conjunction with the plant. It can also generate only one step

248

(4)

(5)

(6)

A Neural Controller Using Imc Strategy

ahead prediction. The architecture is identical to the one used for
identification (Fig. 1).

• Parallel Mode: If we assume that after a suitable training period the network
gives a good representation of the plant (i.e. Ym? yp), the network output itself (and
its delayed values) can be fed-back and used as a part of the network input
(resulting in a recurrent network). In this way the network can be used
independently of the plant. The parallel mode must be used if more than one step
ahead prediction is required, or to achieve certain performance (as will be seen in
Section 3).

u(k)
Plant

Fig. 1. NARMA-L2 identification model.

Where

+ e(k+J)

Ym{k+ J}

Training
Mechanism

X = [u (k - 1). · · u (k - n +I) y p (k - n + 1). · · y p (k - 1) y p (k) r
249

Abdul-lateef and Mirza

Network Architecture

The multi-layered feed-forward neural network shown in Fig. 2 is composed of
many interconnected processing units called neurons or nodes. As can be seen the
net consists of three layers: an input layer (buffer layer), a single hidden layer with
biases, and an unbiased linear output layer. The neurons in the input layer simply
store the scaled input values. The hidden layer carries out two calculations. To
explain these calculations, consider the general j'th neuron in the hidden layer
shown in Fig. 3.

The inputs to this neuron consists of an ni-dimensional vector X (ni is the
number of the input nodes) and a bias with its value as 1. Each of the inputs has a
weight VJ.I associated with it. The first calculation within the neuron consists of
calculating the weighted sum neth1 of the inputs as:

ni
neth j = L v j,l · Xf + v j,ni +1

l=I

Next the output of the neuron h, is calculated as the hyperbolic tangent of neth1 as:

hi = tanh(neth i)

Once the outputs of, the hidden layer are calculated, they are passed to the output
layer. In the output layer, a single linear neuron is used to calculate the weighted
sum neto of its inputs (the output of the hidden layer) as in (9).

nh

(7)

(8)

neto L w j · h j (9)
j = 1

where nh is the number of the hidden neurons (nodes) and w1 is the weight between
the hidden neuron h1 and the output neuron . The single linear neuron, then, passes
the sum neto through a linear function of slope 1 (another slope can be used to
scale the output) as:

y=neto

Using such a network, each of ·the functions g[.] and./[.] in equation (4) can be

approximated separately by g[.J and f[.) respectively, where X represents the

input vector of the networks N1 and N2 (the argument of kf.] and f[.]) as shown
in Fig.1.

250

(10)

A Neural Controller Using Imc Strategy

Inputs

Input
Layer

V: Weight matrix.
~: Weight vector.
L: Denotes linear node.

Hidden
Layer

H: Denotes nonlinear node with hyperbolic tangent function

Output
Layer

Fig. 2. A multi-layered fced-fonvard neural network

Fig. 3. Neuron j in the hidden layer

A suitably trained network has the ability to generalize; it provides the right
outputs in response to inputs not appearing in the training set. An oversized
network is expected to model the process with poor generalization capability,
whereas the undersized network will not be able to represent the process dynamics
faithfully. Although some results are available for predicting the optimal number of

251

Abdul-lateef and Mirza

nonlinear hidden neurons [1], the approach proposed in [5,12] is easier to apply,
this is because of the special structure of NARMA-L2 model. This approach
attempts to obtain a model with the best generalization capability by generating the
simplest model that is compatible with the training (learning) data set.

CONTROLLER DESIGN

The Concept of the IMC Strategy

The IMC strategy is now well known and has been widely applied to process
control. For linear systems, which are described by transfer function models, the
IMC represents a powerful controller design strategy [13]. The basic linear IMC
structure is shown in Fig. 11, where P(z), M(z), C(z), and F(z) represents the plant,
the plant model, the controller, and the robustness filter respectively.

Disturbanced (z)

Set-point

Ysp(Z)

Fig. 4. Linear IMC structure

Initially, neglecting the robustness filter F(z), and referring to the block diagram of
Fig.3 the following relationships can be obtained:

y p (z)

d (z)

1- C (z)M (z)

1 + C (z)(P {z)- M (z))

y p (z) C (z)P (z)

y sp (z) = 1 + C (z) (P (z) - M (z))

(II)

(12)

From (11) and (12), it is apparent that if the model is perfect (M(z)=P(z)) then
the necessary and sufficient conditions to ensure the stability of the overall
structure is that both the controller and the plant are stable. Likewise, perfect
modeling amounts to feed-forward control for set-point tracking, with feedback

252

ANeural Controller Using Imc Strategy

control for disturbance rejection, and hence, the IMC strategy provides a suitable design
structure for the development of robust control techniques.

An important step towards a practically applicable nonlinear feedback controller
design technique was achieved by proving that the attractive properties of the IMC,
as studied in linear control system design, carry over to the general nonlinear case.
Input-output operators were used in [14] to show that nonlinear IMC technique
satisfies the same stability, perfect control, and zero-offset properties as linear
IMC. Moreover, since disturbances were treated as modeling errors, no explicit
techniques were proposed to incorporate measured disturbances in a feed-forward I
feedback control scheme. For the general nonlinear IMC, its important
characteristics are summarized in the following properties [14]:

• Property 1 (Stability): Assume that C and Pare input-output stable and
that a perfect model of the plant is available, i.e., M=P. Then the closed­
loop system is input-output-stable.

• Property 2 (Perfect Control): Assume that the right inverse of the model
operator M 1 exists, that C=M1

, and that the closed-loop system is input­
output-stable with this controller, then the control will be perfect, i.e., YP =
Ysp·

• Property 3 (Zero Offset): Assume that the right inverse of the steady..:.state

model operator M ~ 1 exists, that the controller satisfies c"" = M.;;; 1 , and that

the closed-loop system is input-output-stable with this controller, then offset
free control is attained for asymptotically constant inputs.

Nonlinear IMC Implementation Using Neural Networks

Existing approaches
The idea of using neural networks for nonlinear IMC has been considered by a

number of researchers [3,4,5,6]. The tendency was to employ a NARMA model of
the plant. Moreover, it has been verified in [5] that offset-free performance cannot
be achieved if the controller design is based on a series-parallel model ofthe plant
and it is only the parallel model that can provide offset-free control. Thus for a
NARMA model, the series-parallel model in (2) is replaced by its parallel form as
in (13).

Ym (k + 1) = F[ym (k), Ym (k- 1), ... , Ym (k- n + 1), u (k),

u'(k - 1), ... , u (k - n + 1)]

253

(13)

Abdul-lateef and Mirza

To obtain perfect control, the controller C must be chosen as the inverse of the
internal model M (see Property 2), thus, a neural network may form a nonlinear
approximation to the inverse ofthe previously trained neural plant model of(13)
[4]. Assuming that the desired model output is Ydes (k), the general nonlinear
inverse of the model (13) is defined in (14)

u(k) = G [Ydes (k +I), Ym (k), Ym (k -I), ... , Ym (k- n +I)

u(k- I), ... , u(k- n +I)]
(14)

Assuming that the closed-loop system under neural IMC was stable (see Fig. 5),
there would then be zero offset for asymptotically constant set-point Ysp and
disturbances (which are treated here as modeling errors), if the control law inverts
the steady-state gain of the model exactly.

Alternatively, using the plant model of (13), iterative methods can be used to
calculate the inverse of the model at each sample time [4,5].

d(k)

Fig. 5. IMC implemented using neural network model and its neural network
inverse as a controller

Likewise, in [5] another implementation of the IMC was proposed, in which the
control law was based on a model of the inverse process dynamics, which was
identified directly without the need of the process model of (13). The main
advantage of directly identifying the inverse dynamics of the process is that the
control law can be implemented without on-line inversion of the neural plant
model.

Finally in [6] a novel nonlinear IMC scheme was proposed, which utilized
adaptive linear transfer functions for both plant model and controller, with the
parameters of each determined at each sample time by linearization of a previously
trained neural model of the plant.

254

A Neural Controller Using Imc Strategy

Nonlinear IMC implementation based on an approximate NARMA model
(NARMA-L2)

The neural network that is obtained from the identification structure of Fig. 1 is
of dual use: It can be used as a feed-forward model of the plant as in (15), likewise
if g[.] in (15) is sign definite in the operating region, the network can be used as

the inverse of the plant model as in (16), where Ym(k+ 1) is replaced by the desired
model outputydes(k+ 1)

Ym (k + 1) = f[y P (k), ... , y p (k- n + 1),u(k -1), ... , u(k- n + 1)]

+ g[y P (k), ... , Yp (k- n + 1), u(k -1), ... , u(k- n + 1)] · u(k)
(15)

Ydes (k + 1)- }[yp (k), ... , Yp (k- n + 1), u(k), ... , u(k- n + 1))
u(k) = •

g[y p (k), ... , y p (k- n + 1),u(k), ... , u(k- n + 1)]
(16)

The sign definite of g[.] in the operating region (the region of interest) ensures

the uniqueness of the plant inverse at that operating region [10]. Now, by using
(15) as the model of the plant and (16) as the inverse of the model (the controller),
and after converting (15) and (16) to their parallel form, the IMC structure of Fig. 5
can be implemented directly. In [4] two neural networks were used to implement
the same structure of Fig. 5. Moreover, if the model as in (15) is used, (16) will be
the exact inverse of the model, which is very important to achieve perfect control
(see Property 2). This is, of course, different from the approaches in [4] and [5] in
which numerical methods were used on-line to enhance the accuracy of the
approximated inverse of the model at each sample time.

For the sake of completeness, a time delay, td, which is between the input and
the output of the model may be assumed, then the parallel form of(15) with this
time delay can be written as in (17).

Ym(k + 1) = f[ym(k), ... ,ym(k -n +1),u(k -td -1), ... ,u(k -td -n +1)]

+ g[ym (k), ... ,ym (k -n + 1), u(k- td -1), ... ,u(k- td- n + 1)]· u(k- td)
(17)

The parallel model in (17) can be written in the equivalent prediction form:

Ym(k+td+ 1) = f[y111 (k+td), ... ,ym(k+td-n+ 1),u(k-1), ... ,u(k-n+ 1)]

+ i[ym(k +td), ... ,ym(k +td -n+ 1),u(k -1), ... ,u(k -n+ 1)]·u(k)
(18)

If g[.] in (18) is sign definite in the operating region, the exact inverse ofthe model

will be readily computed for the current input u(k) as in (19)

u(k) = Ym(k + t~ + 1)- f[Ym(k + td), ... ,ym(k + td- n + 1),u(k -1), ... ,u(k- n + 1)] (19)
g(ym(k + td), ... ,ym(k +td- n + 1),u(k -1), ... ,u(k- n + 1))

255

Abdul-lateef and Mirza

It is noticed that the future model output Ym(k+td+ 1) is a function of u(k) and
thus cannot be used in the control law. However, an implementable controller can
be obtained by replacing this output with the filter output v (k) as follows:

Ym (k + td + 1) = v(k) (20)

Using (20), (19) can be written as:

u(k) = v(k)A- f[Ym (k + td), ... , Ym (k + td- n + 1), u(k -1), ... , u(k- n + 1)] (
21

)
g[ym (k + td), ... , Ym (k + td - n + 1), u(k- 1), ... , u(k- n + 1)]

The most important features that the presence of the filter imparts to the system
are the following:

• Introducing robustness in the IMC structure in the face of modeling
errors.

• Projecting the signal &(k) (see Fig. 5) into the appropriate input space for
the controller.

• Smoothing out the noisy and/or rapidly changing signals in order to
reduce the transient response of the IMC controller, in other words, to avoid
controller ringing [15].

It has been shown in [14] that, a simple first order filter as in (22) gives satisfactory
results in terms of robustness and performance.

F(z) = 1-a

1 -1 -az
where

Then from Fig. 5 we have:

I- a
u (z) = ----~1 (y sp (z) - d (z))

I- az
where

d(z)= Yp(z)-ym(Z)

(0 sa< 1) (22)

(23)

For a perfect model d(z)=O, then by using (20) with Ym (k + td + 1) = YP (k + td
+ 1), the following closed-loop transfer function between the plant output and the
set-point is obtained:

256

A Neural Controller Using Imc Strategy

Yp(z) = z-(td+1) 1-a

Ysp (z) 1- az-1
(24)

The filter tuning parameter a. can be tuned to provide a compromise between
performance and robustness. For a perfect model, the effect of the tuning parameter
a. on the closed-loop response is particularly simple. Small values of a. result in
vigorous response, while large values cause sluggish response. The robustness of
the proposed IMC strategy will be investigated in more detail in Section 4.

The filter equation in (23) can be written as:

u(k) = u(k -1) + (1- a){lYsp (k)- d(k)]- u(k -1) } (25)

Using equation (20), (25) can be rewritten as:

u(k) = u(k -1) + (1-a){lYsp (k)- d(k)]- Ym (k +td) } (26)

The signal Ym(k+td) represents the prediction of the plant output td sampling
periods ahead which can be obtained from the prediction model in (18) which
predicts the delayed effect that the manipulated variable u(k) will have on the plant
output yp(k). This prediction is used to provide a dead-time compensator in the
form of Smith predictor [1] and it is possible oply if we have a good model of the
plant. In what follows td is assumed to be perfectly known. Now, by using (20) and
(23), (26) can be written as:

u(k) =a ·U(k -1)+ (1-a)·u(k- td -1)+(1- a)~sp (k)- y P (k) (27)

And by taking the z-transform of (27) we get:

1-a (}
v(z)= -1 -td-I \Ysp(Z)-Yp(Z)

1- az - (1- a)z

(28)

Using (28) the nonlinear IMC can be reconstructed in a classical feedback
structure (see Fig. 6). In fact any conventional feedback controller can be
restructured to yield IMC. Furthermore, any IMC can be put into the conventional
feedback form [13].

257

Abdul-lateef and Mirza

Filter Controlle Plant

+

Fig. 6. Nonlinear IMC in its conventional feedback form

SIMULATION EXAMPLES

Example 1

The plant to be controlled is covered by the difference equation:

-0.9yp(k)+u(k)
Yp(k+l) =

2 l+yp (k)
(29)

This plant has been adopted from [16]. Fig. 7 shows the open-loop step response
with u(k)=0.8. The step response of the plant is very oscillatory for the low
amplitude input and shows limit cycle oscillation for u(k) > 0.6.

0.8 .----.,.-.-,-----.,---,1----.-,---,

0.6

oL_---~'---1~---~'---1~--~
0 20 40 60 80 100

Fig. 7. Plant response with step input by amplitude 0.8

258

A Neural Controller Using Imc Strategy

To identify the plant dynamics, a series-parallel identification structure as that
in Fig. 1 has been used. The model is described by:

Ym (k + 1) = Nl[y p (k)] · u(k) + N2[y P (k)] (30)

where N1[.] and N2[.] are multi-layered neural networks which approximate g[.]
and f [.]of equation (4) respectively. The initial guess ofthe number ofthe hidden
nodes was 3 for each network.

Using a random input sequence {u (k)} with I u(k) I~ 1 a training set of300
patterns has been developed. During the training phase, the training set has been
presented to the network many times. A training event corresponding to a single
pass over the entire training set is called a training epoch or training cycle.
However, for this example after 1600 epochs the Average System Error (ASE)
computed for the latest epoch, which is described by (31), was 0 .I x 1 o-s.

(31)

where Q = total number of patterns. After that, the training has been continued up
to 5000 epochs, but failed to decrease the ASE any further. Depending on this
perfect model, the chosen architecture has been adopted (3 hidden nodes for each
of N1 and N2) and a parallel model of the form:

(32)

has been developed from the series-parallel model of (30) simply by replacing the
plant output yp(k) by the model output Ym (k). Fig. 8 compares the time response of
the parallel model of equation (32) with the actual plant output for the input u(k)
generated as the sum of two sinusoids, as in (33).

u(k) = 0.5sin(
2

.nk) +0.5sin(
2

.nk)
25 10

(33)

259

Abdul-lateef and Mirza

0.5

0

-0.5 L_ __ _L__ _ _..I___.__ __ _,_ __ __,_ __ __, ___ ..___....:....._....._ __J

0 10 20 30 40 50 60 70 80

Plant response
model response

k

Fig.8. The response of the plant (yp) and of the parallel NARMA-L2 model
(ym)

Although the input signal used differs significantly from that used to generate
the training data, the parallel NARMA-L2 model of equation (32) performs
excellently in such a way that the output ofthe plant as well as the output of the
model plotted in Fig. 8 are seen to be indistinguishable. Fig. 9 shows a plot of the
coefficient of u (k) (g[.]) for the parallel NARMA-L2 model as a function of time
with values computed using the corresponding network N1 [ym(k)] when a random
input sequence { u(k)} with I u (k) I ~ 1 has been applied to the model. As shown in
Fig. 9, g[.] is sign definite in the region of interest. This means that the plant model

is invertable, or in other words, the model output Ym (k+ J) is monotonic with
respect to u(k). Since ·the plant is invertable, the IMC strategy using the
approximate NARMA-L2 model can be applied directly.

To make some study on the role of the tuning parameter a, Fig. 10 (a and b)
shows the plant responses yp(k) superimposed on the reference signal (set-point)
Ysp(k) for two different values of a. For a= 0.8 the response yp(k) was sluggish, see
Fig. lOa, it can be seen that the rate of change ofthe response is slow. Faster
response can be obtained by decreasing the value of a as shown in Fig. IO.b, where
a = 0.34. This will ensure excellent set-point tracking without overshoot and with
zero offset.

260

A Neural Controller Using Imc Strategy

1.5.---------,---------.----------.---------.---------.

-1 ~----~----------~----~------~----4-~~----~~

-1.5 L__ ________ .L_ ________ __L_ ________ _L ________ ___J_ ________ ~

0 10 20 30 40 50

Plant output
k

Estimated plant Jacobian (g11
[.])

Fig. 9. Plots of the plant output and the estimated plant Jacobian

-o.4 L__ ______ .~__ ______ ..l.__ ______ -'--____ _

0 100 200 300 400

Plant output
Set-point

k

Fig. lOa

261

Abdul-lateef and Mirza

0.4 ,----.--,---.-,---...,-,----,

r--

0.21- -

or--

-o.2 r- -- -

.....__

-o.
4

..__ ___ ..__1 ___ ..___1 ___ _.___1 __ _____,

0 100 200 300 400

Plant output
Set-point

k

Fig. lOb

Fig. 10. Example 1: Set-point tracking for different values of a: (a) a=O.S, and
(b) a=0.34.aa

Example 2

This example shows the performance of the proposed IMC on the same plant of

example 1 but with time delay of 2Ts (td = 2), where Ts is the sampling time. The plant is

represented by:

-0.9yp(k) +u(k -td)
Yp(k+l)=

2 I+ Yp (k)
(34)

The network used to model the plant in Example. I can be used here again simply by

replacing u(k), of Example. I, by u(k-td), this is because the nonlinear mapping between the

inputs and the output of the network is still the same.

The closed-loop control structure will be identical to that ofExarnple.l except
the robustness filter. Here the filter will have the following pulse transfer function
of the form:

1-a []
u(z) = -1 -td-1 Ysp(z)- Yp(z)

1-az -(1-a)z
(35)

262

A Neural Controller Using Imc Strategy

where td= 2.

Fig. 11 shows the time response of the plant under the proposed IMC strategy
superimposed on the reference set-point signal for a= 0.34.

0.4

0.2 f-

0

-o.2 f--

-o.4
0

Example 3

T

I I

50 100

Plant output
Set-point

I

I

150

I I I

I I I

200 250 300

k

Fig. 11. Set-point tracking with a=0.34

-

If

-

I

350 400

Consider a Continuous Stirred Tank Reactor (CSTR) in which an irreversible
exothermic reaction A -+ B takes place. The heat of reaction is removed by a
coolant medium that flows through a jacket around the reactor (Fig. 12). As is
known from the analysis of the CSTR system, the CSTR is at steady state when the
heat produced by the reaction equals to the heat removed by the coolant. This
requirement yields three steady states, two stable and one unstable.

The process model consists of two nonlinear ordinary differential equations [5]:

263

Abdul-lateef and Mirza

(36)

where C a (t) is the product (effluent) concentration of component A, T(t) is the

reactor temperature, q is the feed flow-rate (assumed to be constant),and qc(t) is
the coolant flow-rate. The remaining model parameters are defined in nominal
operating conditions as shown in the Appendix . The operating point in the
Appendix corresponds to the lower stable state.

The objective is to control C a (t), this can be done by introducing a coolant
flow-rate qc(t) (the manipulated variable), the temperature can be varied and hence
the product concentration controlled [5,15]. To illustrate the problems involved in
controlling the concentration C a (t), a traditional PID controller was first used. The
digital approximation for the PID controller is given in (37).

Cafi q, T1
Reactant

Ca(t), q, T(t)
L ________ __=:=;:::==~ Product

Fig. 12. CSTR with cooling jacket

264

A Neural Controller Using Imc Strategy

qc(k)=Kc s(k)+----: L&(l)+s(k) +-(&(k)-&(k-1)) +qss
{

Ts[k-1) rrJ } -
D l,JJ Ts

(37)

where Kc. ti, rd, and Ts are the gain, integral time, derivative time, and sampling
time respectively. s(k) is the performance error (i.e., s(k) = Ysp(k) - Ca(k)) and
finally qss is the controller's bias signal (i.e., its actuating signal when c = 0), and
for the CSTR it is the coolant flow-rate at steady state qss = 103.41 Vmin.

The tuning method of Cohen and Coon [15] was used to tune the PID
controller. The plant response under the PID controller for set-point tracking was
as shown in Fig. 13. As expected, the PID controller performs well in a limited
range, this range is approximately between 0.06 moVI and 0.08 moVl where the
controller was initially tuned. But the performance deteriorates outside this range.
This reflects the nature of nonlinearity present within the plant, with the degree of
damping varying considerably over the set-point range. Likewise, it is a good
indication that the conventional linear controllers cannot cope with complexities in
the CSTR process.

0_05 L__ _ _J_ __ l_ _ __j_ __ _l_ _ ____J __ ___j_ __ L__ _ __,__ _ ___,

0 100 200 300 400 500 600 700 800 900

Plant output
set-point

k; time(sampling period is o_ 1 min)

Fig. 13. The set-point tracking performance for the PID controller with the
following tuning parameters: Kc =600 12/(min mol), ri =0.946 min, and
n/=0.0375 min.

265

Abdul-lateef and Mirza

As the neural networks are trained off-line, a selection of input-output training
patterns is needed to provide enough information about the plant to be modeled.
This can be achieved by injecting a sufficiently rich input signal to excite all
process modes of interest while also ensuring that the training patterns adequately
cover the specified operating region. The training data has been generated by
forcing the dynamic equations with a series of arbitrary step input changes with
sampling period of 0.1 min. The signals entering to or emitting from the network
(all the elements of the training data) have been normalized to lie within -1 and + 1
in order to overcome numerical problems that could possibly arise otherwise.

Using the identification structure of Fig. 1 with n = 3 (plant order assumed to be
known), a series-parallel NARMA-L2 model of the plant that has the form of
(38):

Ca(k+ 1) = N1[Ca(k),Ca(k-1),Ca(k- 2),qc(k-1),qc(k-2)]· qc(k)

+ N2[Ca(k),Ca(k-1),Ca(k-2),qc(k-1),qc(k-2)]
(38)

has to be identified. Many experiments have been made in order to obtain the
optimum structure of the neural network that can fairly approximate the plant
dynamics. It has been found that the neural network with 6 hidden nodes (for each
of Nl and N2) gives fairly good generalization capabilities (see Fig. 14).

The first step in the design of the IMC is to check the existence of the inverse of
the plant model. This can be done easily by checking the sign of the plant Jacobian
in the region of interest. Fig. 15 shows the coefficient of qc(k) (N1[.] =plant
Jacobian) as a function of time for the parallel NARMA-L2 model of (39) where
qc(k) is the series of step changes used in generating the training data.

Ca(k + 1) = N1~a(k),Ca(k-1),Ca(k- 2),qc(k-1),qc(k -2)].qc(k)

+ N2~a (k),Ca (k -1),Ca (k- 2),qc (k -1),qc (k- 2)) (39)

Since the plant Jacobian (N1[.]) is sign definite in the region of interest, the plant
model is invertable and a controller ofthe form of(40) can be implemented.

" " "
%(k) li._k)-N~Ca(k),Ca(k -I),Ca(k-2),qc(k -I),qc(k-2)]

Nlf.Ca(k),Ca(k-I),Ca(k-2),%(k-I),%(k-2)]
(40)

wherev v(k) is the output of the robustness filter.

266

A Neural Controller Using lmc Strategy

1.5r---------~----------~----------~----------~--~

-1.5 L__ ________ __j __________ __J_ __________ __j__ __________ _j_ __ __j

0 50

Plant output
model output

100 150 200

k; time(sampling period is 0.1 min)

Fig. 14.The performance of the parallel model with the testing set

0.14

1 0.12

0.1

50 100 150 200

k; time(sampling period is 0.1 min)

Fig. 15. The estimated plant Jacobian

267

Abdul-lateef and Mirza

Each experiment to be made has been conducted over 900 samples using a
sampling time of 0.1 min., which resulted in 90 min. duration. The filter was
initially tuned with a= 0.5. Fig. 16.a shows the plant response and Fig. 16.b shows
the corresponding control signal. As can be seen from Fig. 16.a, large overshoots
have occurred for set-points greater than 0.09 mol/1. however, the response for set­
points less than 0.09 mol/1 is very good. It can also be observed that for each step
change in the set-point, sharp fluctuations have occurred in the controller output
(see Fig. 16.b), which results in very fast plant response. It can be observed, also,
that the control signals settle generally within a few samples. It is important to note
that prolonged adverse fluctuations of the control signals could damage the
actuator. The large overshoots observed in Fig. 16.a were caused by the modeling
errors. Fortunately the effect of mismodeling can be decreased by choosing
relatively large a for the robustness filter, or/and by adding a filter at the set-point
Ysp(k). To illustrate the effect of a first order set-point filter (with a tuning
parametery) on the plant response and more importantly on the controller
response, compare Fig. 16 with Fig. 17a. Fig. 17b shows the plant response and the
corresponding control signal fory = 0.6 and a.= 0.5.

It can be observed that the controller can track almost precisely over the nonlinear
operating region, moreover, lower control moves (as compared with the pervious
case) are required. From these Figures (10 and 11), it is obvious that decreasing
the pole of the set-point filter (r) causes large control moves and consequently
faster set-point tracking. Generally speaking, excessive control valve (the actuator
for the CSTR) movement is unacceptable in industrial practice, and smooth
controller outputs prolong actuator life. Thus tuning r depends mainly on practical
limitations.

268

A Neural Controller Using Imc Strategy

0.11 I I I I I

0.1 -, v
v l 0.09 -

i 0.08 f- l -

r
'

~

0.07 f- l -

r
0.06 1--

l -

0.05
I I I I I I I

0 100 200 300 400 500 600 700 600 900

-- Response
k; time(sampling period is 0.1 min.)

-- Set-point

(l6a)

I I I I I

120 -

110 -

s
;§.
u -
fT 100

go- -

so I I I I I I I I

0 100 200 300 400 500 800 700 800 900

k;time(sampling period Is 0.1 min.)

(16b)
Fig. 16. Example 3: (a) the set-point tracking performance, (b) the

corresponding control signal for a = 0.5

269

Abdul-lateef and Mirza

0.11

0.1

0.09

i' s 0.08

l3

0.07

0.06

0.05
0 200 400 600 600

Response k; 1ime(sampllng period 18 0.1 min.}

Set-point

(17a)

I I I I I I I I

120 t- -

'2' 110 -

~
(.)
0"

100 t- -

l
r

I I I l I I I I ~~----~----~----~----~----~----~----~----~----~
0 100 200 300 400 500 600 700 800 900

k;time(sampling period is 0.1 min.)

(17b)
Fig. 17 (a) the set-point tracking performance, (b) the corresponding control
signal for a = 0.5 and r = 0.6

270

A Neural Controller Using lmc Strategy

The second set of experiments has been carried out with the purpose of
studying the ability of the proposed controller in rejecting unmeasured disturbances
(for CSTR the most common disturbances are in Caf, q, Tj). In order to evaluate the
ability of the proposed controller in rejecting unmeasured disturbances, it is
necessary to compare it with others used in existing approaches, thus, the PID
controller was chosen for this purpose and to ensure identical comparison between
the two controllers, the same design and controller parameters were used for the
IMC and the PID controllers as in the first set of experiments. The effects of the
disturbance on the two controllers are shown as in Fig. 18, when an artificial step
change in the feed temperature T1 ofvalue 5K was added to the process at the 100
sampling instant. It can be observed that the proposed neural controller performs
well with the ability to recover quickly from the effects of the positive step change
in Tr. also it can be observed that the control moves for the two controllers are
similar. Improved disturbance rejection can be obtained by decreasing the tuning
parameter a of the robustness filter. From the above discussion, it is clear that there
is a trade off between robustness and performance, if we want good performance,
the robustness must be sacrificed, and vice versa.

0.07!T---'-----'---'----L-____L__.....J
80 100 120 140 180 180 200

I MC k;time(sampling period is 0.1 min.)

- PID
- Canominal

(18a)

108

[108
II-

104

102 L___L___J..____J..____J___J______J

80 100 120 140 180 180 200

-IMC
k--periodia0.1 min.)

- PID

(18b)

Fig. 18. Disturbance rejection performance under IMC controller with a = 0.5 and
under PID controller with Kc =600 12/(min mol), ri =0.946 min, and n/=0.0375 min.

CONCLUSIONS

An IMC strategy based on neural NARMA-L2 model has been designed and
applied successfully to a number of nonlinear systems with and without time delay.
The proposed strategy has shown the ability to out-perform conventional PID

271

Abdul-lateef and Mirza

controller, for set-point tracking and disturbance rejection, as it was clear when
applied to the CSTR plant.

Under IMC controller, it is easy for an operator to determine the bandwidth
suitable for a particular application by choosing an appropriate value for the
robustness filter tuning parameter (a). A low bandwidth gives a slow response,
small control signals, and low sensitivity to modeling errors and disturbances. A
high bandwidth gives a fu.st response. However, the control action will be large and
the system will be sensitive to modeling errors and disturbances.

Since the proposed controller is fixed, a specialized neural controller chip may
be trained as a stand-alone controller.

If an adaptive controller is desired, with simultaneous on-line training of the
feed-forward model M, this control procedure may be made fully adaptive, without
the problems associated with training a controller embedded within a control loop.

Using a feed-forward model of the plant in the form ofNARMA-L2, an exact

inverse of the model can be computed directly without the need to numerical
methods that are used on-line in each sample time to compute an approximate
model inverse. It should be noted that the exact inverse is very important to achieve
offset-free performance.

Using neural NARMA-L2 model as a nonlinear model of the plant provides a
simple check on the model invertability which appears to be of critical importance.

REFERENCES

1. Kanjilal, P. P., 1995. Adaptive prediction and predictive control. England:
Peter Peregrinus Ltd.

2. Omatu, S., Khalitl, M., and Yusof, R., 1995. Neuro-Control and its
Applications. London: Springer-Velag.

3. Bhat, N. and McAvoy, T. J., 1990. Use of neural nets for dynamic modeling
and control of chemical process systems. Comput. Chern. Eng., Vol. 14,
No.(4-5), pp. 573-583.

4. Hunt, K. J. and Sbarbaro, D., 1991. Neural networks for nonlinear internal
model control. lEE Proceedings-D. Vol. 138, No. 5, pp. 431-438.

272

A Neural Controller Using Imc Strategy

5. Nahas, E. P., Henson, M.A., and Seborg, D. E., 1992. Nonlinear internal
model control strategy for neural networks. Computers Chern. Eng., Vol. 16,
No. 12, pp. 1039-1057.

6. Lightbody, G. and Irwin, G. W., 1997. Nonlinear control structures based
on embedded neural systems models. IEEE Trans. Neural Networks, Vol. 8,
No. 3, pp. 533-567.

7. Hunt, K. J., Sbarbaro, D., Zbikowski, R., and Gawthrop, P. J., 1992.
Neural networks for control systems-A survey. Automatica, Vol. 28, No.6,
pp. 1083-1112.

8. Levin, V. and Narendra, K. S., 1996. Control of nonlinear dynamical
systems using neural networks_Part II: Observability, Identification, and
Control. IEEE Trans. Neural Networks, Vol. 7, No. 1, pp. 30-42.

9. Chen, S. and Billings, S. A., 1989. Representations of nonlinear systems: the
NARMAX model. Int. J. Contr. Vol.49, No.3, pp. 1013-1032.

10. Narendra, K. S. and Mukhopadhyay, S., 1997. Adaptive control using
neural networks and approximate models. IEEE Trans. Neural Networks,
Vol. 8, No.3, pp. 475-485.

11. Chen, F. C., 1990. Back-propagation neural networks for nonlinear self­
tuning adaptive control. IEEE Control Systems Magazine, Vol. 10, No.3, pp.
44-48.

12. Knight, K., 1990. Connectionist ideas and algorithms. Communications of
the ACM., Vol. 33, No. 11, pp. 59-74.

13. Gracia, E. and Morari, M., 1982. Internal model control. 1: A unifying
review and some new results. Ind. Eng. Chern. Process Des. Dev., Vol. 21,
No. 2, pp. 308-323.

14. Economou, G., Morari, M., and Palsson, B. 0., 1986. Internal model
control 5: Extension to nonlinear systems. Ind. Eng. Chern. Process Des.
Dev. Vol. 25, No.2, pp. 403-411.

15. Stephanopoulos, G., 1984. Chemical Process Control: An Introduction to
Theory and Practice. Englewood Cliffs, N.J.: Prentice-Hall.

273

Abdul-lateef and Mirza

16. Ahmed, M. S. and Tasadduq, I. A., 1994. Neural-net controller for
nonlinear plants: design approach through linearisation. lEE Proc.-Control
Theory Appl., Vol. 141, No.5, pp. 315-322.

APPENDIX

Nominal CSTR Operating Conditions

Parameter Description Nominal Value

q Process flow-rate 1001 min"1

Cq~ Inlet feed concentration 1 molr1

Tl Feed temperature 350K
Tcf Inlet coolant temperature 350K
Vol Reactor volume 100 I
ha Heat transfer coefficient 7x105 cal min-1

. K 1

ko Reaction rate constant 7.2x1010 min"1

EIR Activation energy 9.95x103 K
&l Heat of reaction -2x105 cal mor1

p, Pc Liquid densities 1000 gr1

c,. Cpc Specific heats 1 calg"1
• K 1

qc Coolant flow-rate 103.411. min-I
T Reactor temperature 440.2K
Ca Product concentration 8.36x 10"2 mol r 1

Note:

Pr
. vol 100/

ocess time constant =-= I min
q 100/·min -I

274

