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ABSTRACT 

The problem of fully developed, laminar, steady, forced convection heat transfer 
in an electrically conducting fluid flowing in an electrically insulated, horizontal, 
circular pipe (whose wall is subjected to a uniform heat flux) in a vertical 
uniform transverse magnetic field has been considered numerically. The central 
difference scheme is employed in the analysis. For high Hartmann numbers (100 
~ M ~ 500), the refinement of the mesh in the radial direction is necessary in 
order to handle the effect of the Hartmann boundary layer. To have 'a 
convergent solution, under-relaxation is needed for high M. A considerable 
number of results for MFM forced convection are obtained. All the results (i.e. 
velocity and temperature distributions and heat transfer), in general, are in a 
good agreement with the previous work. 

NOMENCLATURE 

Radius of pipe, meter (m) 
Magnetic flux density vector, tesla (T) = Hf gauss 
Uniform magnetic flux, T 

B" Bq,, Bz 
Bx 

Radial, angular and axial magnetic flux, T 
Vertical magnetic flux, T 

ct 
c 
d 
E 
E" Eq,, Ez 
£;, E; 
E* 

'1 

F 
g 

Skin coefficient of friction 
Specific heat, J/kg· oc 
Diameter of pipe, = 2a 
Electric field vector, V /m 
Radial, angular and axial electric field, V /m 
Dimensionless vertical and horizontal electric field 
Dimensionless radial electric field 
Body force vector, N/m3 

Gravitational acceleration vector, m/s2 
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Downward gravitational acceleration, m/s2 

Components of gravitational acceleration in r, fjJ and z-directions, m/s2 

Mesh size in 71-direction 
Heat-transfer coefficient, w/m2

• oc 
Magnetic field vector, Aim 
Dimensionless induced axial magnetic field, H/[um(uJL/12

] 

Dimensionless radial, angular and axial magnetic field 
Normalized magnetic field, HI'Y 
Integer variable in 71-direction, 1,2,3, .... ,L-1 
Electric current density vector, A/m2 

Integer variable in f/J-direction, 0,1 ,2,3, .... ,K 
Maximum ofj, integer at where fjJ = 1r/2 
Thermal conductivity of fluid, w/m· oc 
Maximum of i, integer where 71 = 1 
Hartmann number, B0a(uiJL/12 

Iteration step number, integer 1,2,3, .... 
Nusselt number, hcd/k 
Fluid pressure, N/m2 

Prandtl number, CJLjk 
Constant heat flux, -qw 
Constant wall heat flux, w/m2 

Radial coordinate measured from the centerline of pipe, m 
Magnetic Reynlods number, UJLUma 
Root-mean square residuals for the variables, defined in (4.1) 
Fluid property 
Sensitivity, defined in Reference [8] 
Temperature, oc 
Bulk mean temperature, oc 
Temperature difference, oc 
Velocity vector, m/s 
Mean axial velocity, m/s 
Axial fluid velocity, m/s 
Dimensionless axial velocity, u/um 
Normalized axial velocity, wi'Y 
x-coordinate, m 
Dimensionless x-coordinate, xla 
y-coordinate, m 
Dimensionless y-coordinate, y/a 
Axial coordinate, m 
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Greek Letters 

"Y Non-dimensional pressure gradient, [(oploz)(cr)]lu,J.t1 
ocf> Mesh size in cf>-direction, radiant 
VZ Laplacian in dimensionless cylindrical coordinate unless stated otherwise 
11 Dimensionless radial coordinate, ria 
0 Dimensionless temperature, (T- TJI(aq/k) 
JL Magnetic permeability of fluid, H/m 
JL1 Dynamic viscosity of fluid, N·s/m2 

" Kinematic viscosity of fluid, m2/s 
p Density of fluid, kg/m3 

a Electrical conductivity of fluid, AIV ·m 
cf> Angular coordinate measured from direction of magnetic field, radiant 
w Relaxation parameter 

Subscripts 

c 
f 
i 
j 
M 
m 
r, cf>, z 
1J, X, y 
w 

Refers to centerline of pipe 
Refers to friction 
Refers to the radial discretization 
Refers to the angular discretization 
Refers to magnet 
Refers to mean 
Refers to components in r, cf> and z-directions 
Refers to components in 71, x andy-directions 
Refers to wall 

Superscripts 

n Refers to iteration step 

INTRODUCTION 

MFM forced convection through a circular pipe with and without heat transfer 
is very attractive problem. Hartmann, [6], obtained the exact solution of the flow 
between two parallel, non-conducting walls with the applied magnetic field normal 
to the walls. Shercliff, [7], solved the problem of rectangular duct, from which he 
noticed that for high Hartmann numbers M the velocity distribution consists of a 
uniform core with a boundary layer near the walls. This result enabled him to 
solve the problem for a circular pipe in an approximate manner (a first 
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approximation which gives rise to errors of order M- 1
) for large M assuming walls 

of zero conductivity and, subsequently, walls with small conductivity (Shercliff, 
[8]). Chang & Lundgren, [9], considered the effect of wall conductivity for this 
problem. Gold, [10], analytically solved the MHO problem in a circular pipe with 
zero wall conductivity. His solution was an infinite series of Bessel functions, 
which was approximated for large M with the first few terms. For the same 
problem, Shercliff, [11], used the second approximation (which gives rise to errors 
of order M- 2

) to get the solution for large M. Gardner, [12], used Gold's solution 
to evaluate the exact solution for temperature profile, which turned out to be very 
complex. Then, he approximated velocity profile for small to moderate M with a 
polynomial form from which he calculated the Nusselt number Nu. For large M, 
he used Gold's approximation to determine Nu. In the present work, we solve this 
problem numerically using central difference second-order accurate scheme with 
Gauss-Seidel SOR iteration methods to obtain dimensionless axial velocity w, 
Induced magnetic field H, and temperature 8 from which we calculate 
dimensionless pressure gradient and local and average Nusselt numbers and 
compare them with the previous results. Those results are for special case, which 
help us r·xxadvance in"Xx more general one of combined free and forced 
convection of MFM pipe flow. In this special problem, we should regard the 
vertical and the horizontal coordinates as the lines of the symmetry. Thus, we 
would consider only one quadrant of the circle given in Figure 1. We should 

Fig. 1: 

I 

.. 
l l l I I I l I I 

Pipe cross section showing coordinate system and induced 
electric current lines, [3] 
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notice that H is asymmetric along the horizontal line, but this does not cause a 
problem since the horizontal line simply reflects the negative value of H. 

GOVERNING EQUATIONS 

Referring to Figure 1 and from the assumptions that the flow is laminar, 
steady, fully developed in an electrically conducting fluid flowing in an electrically 
insulated, horizontal, circular pipe whose wall is subjected to a uniform heat flux 
in a uniform transverse magnetic field, the dimensionless governing equations for 
forced convection MFM pipe flow under transverse magnetic field can be written 
as, [1], (To derive those equations, a major assumption has been made, that is, the 
magnetic Reynolds number has been assumed to be very small compared to the 
unity. This will make the induced fields much smaller than the total or the applied 
field. Accordingly the governing equations would be simplified very significantly. 
Consult Reference [1] for more details). 

(1) 

" 2 w. M( sinfb aH· ..~.. aH·) _ 1 v + ---- - COS'I'--
71 afb aT/ 

(2) 

and 

(3) 

where the Laplacian VZ operator is given by 

az 1a 1a2 

vz- + + 
a112 71 aT/ 112 af/J2 

and where the dimensionless velocity w and the axial velocity is related by w = 
u/um and the normalized velocity is defined as w* =WI"'(. The boundary conditions 
can be stated as following: 
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w I - o '1-1 

from no-slip condition, 

I 1 a..p I - o 
u .,-1 - "';j o<f> '1-1 from impermeable condition. 

From which, one can deduce that it is sufficient to let 

..P I .,-1 - o 

Beside, 

HI -0 .,-1 from zero wall conductivity, 

ae 
07] I .,-I - 1 from uniform heat flux . 

DIFFERENCE EQUATIONS 

Equations (1) to (3) can be discretized by utilizing the central difference 
scheme to obtain the following difference equations, 
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and 

where 

G-1+ 1 G 1 1 
1 2i ' 2 - - 2i 

C.. - h2'11 - hM[ sin(joq,) 5 n.·. - cos(jo..!..) 5 H.*.] 
IJ I 2 ioq, ~ IJ 'I' 'I I,J 

D _ _ Mh [ sin(ioq,) 5 .*. _ (j"o..!..) 5 .*. J 
ij 2 ioq, <P w," cos "' ., w," 

and 
- -

o.,( )ij < )i•lj - < )i-lj , o<P( );j < )ij•l - < )ij-1 

SOLUTION OF THE EQUATIONS 

The systems of linear algebraic equations can be solved by employing point­
Gauss-Seidel iterative method and this procedure can be summarized as following, 
1) construct initial distribution for H*, w*, and 0, 
2) compute the variables at the center using the rectangular form of the finite 

difference equations for next iteration, 
3) apply Dirichlet boundary conditions for the velocity and the induced magnetic 

field, 
4) apply symmetric conditions along the vertical line and horizontal line, and 

compute the variables at q, = -oq, for next iterative cycle and calculate the 
variables at q, = 7r 12 + oq, for the present iteration, 

5) advance the equations for the variables 1-cycle using Eqns. (4), (5), and (6) 
and apply Gauss-Seidel method, 

6) apply Neumann boundary condition for temperature, 
7) check the convergence by testing root-mean-square residuals Rs for each flow 
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variable. Convergence is considered to be achieved when Rs < 10"". Rs is 
defined as, 

L K 

Rs - L L (s;t - S;~)2 
(7) 

j-(} j-o 

8) repeat steps 2)-7) until convergence is achieved. 

RESULTS 

Some numerical results obtained for the case of MFM forced convection 
laminar pipe flow in a transverse magnetic field with heat transfer, which could 
be helpful in handling the problem when the free convection is added, are found 
to be in good agreement with Gold's exact solution, [10], and Gardner's 
approximate solution, [12]. 

In this computation, only one quadrant is considered since this problem is 
symmetrical along the vertical and horizontal diameters. The SOR (successive over 
relaxation) is utilized to accelerate the iterations with w = 1.2, (All relaxation 
parameters w given here are only for w* and Er but w = 0.8 for 0 is used in all 
computations for since the boundary condition for 0 is Neumann type and it would 
introduce more error. Consequently, there would be some stability problem in 
using line-iterative method for solving 0 for w > 0.8. Therefore, it is preferable 
to let w = 0.8 for 0 to make the solution more stable.) and this is used only for 
low and moderate M at 24x 12 grid, but for high M, SUR (successive over 
relaxation) must be employed to decelerate the iterations. As an example, forM 
= 100 and forM= 500 at the same mesh size, w = 0.7 and w = 0.18 should be 
selected, respectively. The reason for using SUR is due to the source terms. 
Refining the mesh also would solve part of this problem, for example, when 
124x 12 mesh is used the relaxation parameter w forM = 100 and M = 500 
would be increased to 1.0 and 0.6, respectively. 

If R8 ., Rw• and R0 are the root-mean-square residuals [defined in Eqn.(7)] for 
Er, w* and 0, respectively, it can be noticed through the results obtained that at, 
24 x 12 mesh, RH* and ~ would converge faster than R0, and this difference be­
comes more apparent for high M at 124 x 12 mesh. As an example, for low M, 
R8 • and Rw* would reach almost a value of zero but R0 would reach a value of 5 x 
10-4 after 1,500 iterations (See Figure 2a). For high M (100 to 500), RH* and~ 
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would reach a value of w-s after 1,800 iterations, in contrast to R8 which would 
reach a value of 6 x 10-4 after 4,300 iterations (See Figure 2b). 

Figure 2a. 

Figure 2b. 

11/100 

Root-mean-square residuals R. vs. number of iterations 
n per 100 iterations for low M ( = 1 0) 

-1L---~~~~~~----~~~~~~ 
1CJl 1~ 1CJl 

J¥'100 

Root-mean-square residuals R. vs. number of iterations 
n per 100 iterations for high M (= 10) 

123 



M.J. Al-Khawaja, R.A. Gardner and R. Agarwal 

Now, some of the plots obtained for MFM forced convection pipe flow will 
be discussed and will be compared with the previous work, [10] and [12]. Figure 
3 shows the profiles of the normalized axial velocity profiles as a function of 11 for 

Figure 3. 

0.5 
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-2w* 

0.2 

10 

0.1 

0 
0 0.1 

Normalized velocity profiles plot along the radial direction at 
different low Hartmann numbers M and at ~ = 0 

low M (1.2 to 10) at ~ = 0. You can notice that the profiles would tend to be 
flattened as M increases. This flattening becomes clear for large M and the velocity 
w profiles, as seen in Figure 4, become uniform along the radial direction at zero 

Figure 4. 

JI•O 

30 

0.5 

0oL-~0~.1~0~2~0~.3~0~ .• --0~.5~0~.6~0~.7~0~8--0~.9~ 

Dimensionless velocity profiles along the radial direction as a 
function of Hartmann numbers M at ~ = 0 
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angle from the field. For an angle of 90° from the field the velocity profiles seem 
to have less flattening and tend to preserve the parabolic shape as seen in Figure 
5. The reason for this is that at cp = 90° and near the boundary, J, would tend to 

Figure 5. 

1.5 10 

30 

.. 

0.5 

Dimensionless velocity profiles along the radial direction as a 
function of Hartmann numbers Mat cp = 1r12 

vanish since the wall is electrically non-conducting and the other current density 
component l,p does not interact with B0 since they are parallel. Therefore, one 
expects the ponderomotive force tends to vanish at that region. At cp = 0, the 
Hartmann boundary layer develops at high M and the solution oscillates near the 
boundary. Figure 4 shows these oscillations near the boundary at cp = 0 and they 
become noticeable at M = 500 for 124 x 12 mesh. Those oscillations could be 
damped out by refining the mesh along the radial direction particularly near 
Hartmann boundary layer. Figures 6 and 7 show a good agreement between the 
numerical normalized velocity profiles and Gold's exact and asymptotic solutions 
forM= 10 and M = 100, respectively, at cp = oo and 90°. Also, the numerical 
result for negative non-dimensional axial pressure gradient --y as a function of M 
agrees with that obtained exactly or asymptotically. See Figures 8 and 9. As M 
gets higher, in Figure 9, the relation between --y and M becomes linear (straight 
line) with a slope of 37rM/8 as it was predicted by Shercliff, [8]. The numerical 
result for the normalized induced magnetic field is plotted as 7J for M = 4 and M 
= 10 at cp = 0 and a good agreement with Gold's solution is obtained in Figure 
10. Figure 11 shows the dimensionless radial electric field profiles along the 
horizontal radius, cp = 1rl2, for different values of Hartmann numbers. Those 
profiles behave in similar way as velocity profiles shown in Figure 5. Figure 12 
compares the sensitivity S defined in Reference [8] with Gold's solution. The 
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Figure 6. 

Figure 7. 
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Figure 8. 

Figure 9. 
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Relations between negative non-dimensional pressure gradient - 'Y 
and low to moderate Hartmann numbers. *, Gold's solution;--, 
[ 1 0], Present work 
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Relations between negative non-dimensional pressure gradient -'Y 
and low and high Hartmann numbers. *, Gold's solution;--, 
[10], Present work 
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Figure 10. 

Figure 11. 
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0.05 

0.04 

Normalized induced magnetic field along the radial direction at (jJ 
= 0. *, Gold's solution;--, [10], Present work 

Dimensionless radial electrical field along the horizontal radius, (jJ 
= 1rl2, for different values of M 
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Sensitivity vs. Hartmann number M. *,present work; +,Gold's 
solution, [10] 

present numerical solution has a slight deviation for low M but for high M (- 100 
not shown in the figure), the asymptotic Gold's solution for sensitivity (S = 0.925) 
is almost identical to the present numerical solution which is 0.928. Figure 13 

Figure 13. 

/11•0 
-o.5L__~~-~~-~~-~~-~---' 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Dimensionless temperature profiles along the radial direction at 
<J> = 0 at different values of Hartmann numbers M 
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depicts the temperature profiles at (jJ = 0 where they tend to flatten and approach 
a constant value as M increases, but this effect would be less at (jJ = 90°. See 
Figure 14. The explanation of this is that the velocity profiles are more flattened 

Figure 14. 

Ill• 0 
-0.5'----~-----:~~-~~---,-~~-----:~--::':c-__J 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Dimensionless temperature profiles along the radial directi'on at (jJ 
= 7r/2 for different values of Hartmann numbers M 

near (jJ = 0 from those near (jJ = 90°. Furthermore, Nu can be plotted as a 
function of (jJ (since ()w depends on (jJ) for different values of Mas shown in Figure 
15. At M = 0, Nu has a constant value which is very close to 48/11 as in the case 

Figure 15. 

·L_~-~-~~-~-~~-~~ 
0 10 20 JO +O 50 60 70 80 90 

•• 

Local Nusselt number as a function of the angular coordinate 
measured from the direction of the magnetic field 
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of the absence of the magnetic field. As M increases, Nu increases and approaches 
the value 8 at cp = 0 as in the case for uniform velocity profile in pipe flow. See 
Figure 15. Figure 16 shows a good agreement with Gardner's approximate solution 

Figure 16. 

,.., 

.... 41111--------------j 

·L_~-~-~~-~-~~-~~ 
0 10 20 30 40 50 60 70 80 90 ,. 

Comparison of numerical data of local Nusselt number with 
Gardner's approximation, [ 12]. *, Gardner's solution;--, Present 
work 

for Nu at low and high M. Figure 17 compares the numerical data for the average 

Figure 17. 

6.5 

" 

X Ooaol'o .... lf~-~IZJ 

+ _....., ......... _[12) ·--
Average Nusselt number as a function of M 
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Nusselt number as a function of M with Gardner's approximations for both high 
and low M. As before, there is a close agreement. Finally, Figure 18 can be 
compared with the result obtained by Gardner, [12], for MFM forced convection 
where the velocity profiles flatten as M increases and the flattening is more 
pronounced at~ = 0, 1r. 

Figure 18. 

(1) 
(2) 

(3) 

Axial velocity w profiles for MFM forced convection, M = 0 
and Pr = 0.024. (1), M = 0; (2), M = 10; (3), M = 100 

CONCLUSIONS 

In conclusion, one can notice that the numerical results are, in general, in a 
good agreement with the literature. In MFM forced convection flow, the numerical 
results are almost identical to Gold's solution, [10], and Gardner's approximation, 
[12]. In this case, the problem of the Hartmann boundary layer at large M could 
be resolved by refining the mesh near the boundary in the radial direction. The 
source terms discussed in Reference [ 1] would cause the solution to diverge at high 
M, but refining the mesh in radial and angular directions or under-relaxing the 
line-iterative scheme, the solution would converge even for high M. 
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