Strong and Weak n-Homogeneous Spaces Adnan Al-Bsoul*, Ali Fora** and Abdalla Tallafha* *Mathematics Department, Qatar University, P.O. Box 2713, Doha, Qatar **Mathematics Department, Yarmouk University, Irbid, Jordan ## فضاءات n- متجانس القوية والضعيفة عدنان البصول* و علي فوره** وعبد الله طلافحه* *قسم الرياضيات، جامعة قطر، ص . ب . ٢٧١٣، قطر **قسم الرياضيات، جامعة اليرموك، اربد، الأردن ي هذا البحث سوف نستحدث أنواعاً جديدة من n- متجانس، والتي سوف ندعوها n-متجانس من النوع n والنوع nH_3 , nH_2 وسوف نرمز لها nH_3 , nH_2 على الترتيب، سوف نبرهن بأن كل فضاء H_3 هو ثنائي التجانس، وكذلك سوف نبرهن بأن كل فضاء H_3 هو فضاء نبرهن بأن كل فضاء H_3 هو فضاء خرسه بأن كل فضاء H_3 هو فضاء H_3 متجانس قوي. سوف ندرس بعض العلاقات الممكنة بين الفضاءات والفضاءات المعرفة سابقاً مثل H_3 - متجانس بضعف. **Keywords:** Homogeneous, bihomogeneous, n-homogeneous. #### **ABSTRACT** In this paper we introduce new types of n-homogeneity, we call them n-homogeneous of type 2 and type 3, denoted by nH₂, nH₃ respectively. We show that every 3H₃-space is bihomogeneous space. Also, every finite nH₃-space has the trivial topology (discrete or indiscrete). We show that every 3H₃-space is strong 2-homogeneous. We study the implications between these spaces with the well known spaces, strongly n-homogeneous spaces and weakly n-homogeneous spaces. ## 1. Introduction A space X is called *homogeneous* if for every x, y in X there exists a homeomorphism $h: X \to X$ such that h(x) = y. Several authors studied the n-homogeneity spaces, for instance [1], [2] and [4]. In this section we shall give the definitions besides with the obvious implications between these definitions. For a set X, by |X| we mean the cardinality of X. Let us start with the following definition, one may consult [1]. **Definition 1.1.** A space X is called *bihomogeneous* provided every two points in X can be interchanged by means of an autohomeomorphism on X. Although every bihomogeneous space is homogeneous, the converse is not true. In fact the reals R with the left ray topology is homogeneous but not bihomogeneous. For the next definition one may see [2]. For a positive integer n we have the following definitions. **Definition 1.2.** A space X is *n*-homogeneous of type 1, denoted by nH_1 , if for every two subsets of X each having exactly n elements $A = \{x_p, ..., x_n\}$ and $B = \{y_p, ..., y_n\}$, there exists a homeomorphism h of X onto itself such that h(A) = B. **Definition 1.3.** A space X is called *n*-homogeneous of type 2, denoted by nH_2 , if for every two subsets of X each having exactly n elements $A = \{x_p, ..., x_n\}$ and $B = \{y_p, ..., y_n\}$, there exists a homeomorphism h of X onto itself such that h(A) = B and, h(z) = z for all $z \in A \cap B$. **Definition 1.4.** A space X is called *n*-homogeneous of type 3, denoted by nH_3 , if for every two subsets of X each having exactly n elements $A = \{x_p, ..., x_n\}$ and $B = \{y_p, ..., y_n\}$, there exists a homeomorphism h of X onto itself such that h(A) = B and $h(x_1) = y_1$. **Definition 1.5 [4].** A space X is called *n*-homogeneous of type 4, denoted by nH_4 , if for every two subsets of X each having exactly n elements $A = \{x_1, ..., x_n\}$ and $B = \{y_1, ..., y_n\}$, there exists a homeomorphism h of X onto itself such that $h(x_i) = y_i$ for all i = 1, ..., n. Notice that *n*-homogeneous spaces of type 4 were introduced before, and in [4] such spaces are called strongly *n*-homogeneous. It is obvious that every nH_4 -space is an $(n-1)H_4$ -space, and hence every nH_4 -space is homogeneous provided that |X| > n. #### 2. 1- and 2-Homogeneous Spaces of all Types In this section we shall study all implications between 1-, and 2-homogeneous spaces of type 1, type 2, type 3, and type 4. Also, we shall give a characterization of n-homogeneous spaces of type 4. Besides we have the following results. **Theorem 2.1.** Every $2H_3$ -space $(2H_2$ -space) is homogeneous provided that $|X| \ge 3$. **Proof.** Let $x, y \in X$. Let $z \in X \setminus \{x, y\}$ and consider the sets $\{x, z\}$ and $\{y, z\}$. So, there exists a homeomorphism $h: X \to X$ with h(x) = y. **Remark.** In the proof of Theorem 2.1 we assumed that $|X| \ge 3$. In fact, if |X| = 2 and X is $2H_3$ ($2H_2$), then the topology on X is trivial (discrete or indiscrete) and hence it is homogeneous. Also, one can notice that if $|X| \le n$, then X is nH_m —space for m = 1, 2, 3, 4. **Theorem 2.2.** Let X be a finite space with |X| > n, then X is an nH_3 -space iff X has the trivial topology (discrete or indiscrete). **Proof.** Suppose on the contrary, that is, X is finite and τ is not the trivial topology. Hence, there exists a proper open subset U of X. Let $x_0 \in U$, and let $k = |\bigcap \{V \in \tau : x_0 \in V\}|$, since τ is not trivial then k > I. Since X is homogeneous, and $\bigcap \{V \in \tau : x_0 \in V\}$ is the smallest open set containing x_0 , then for $x \in X$, there exists a unique open set U_x containing x of cardinality k, in fact such an open set U_x is the smallest open set containing x. Let $x_1 \in X$, fix the unique open set U_{x_1} containing x_1 with $|U_{x_1}| = k$. Since τ is not trivial, then there exists $x_2 \in X \setminus U_{x_1}$. Consider the unique open set U_{x_2} containing x_2 with $|U_{x_2}| = k$. Hence $U_{x_1} \cap U_{x_2} = \emptyset$. If $X \setminus (U_{x_1} \cap U_{x_2})$ is not empty continue in this process. Finally, we get $X = \bigcup_{i=1}^n U_{x_i}$, each U_{x_i} is open with cardinality k. We have the following cases: I. $n \le k$. Choose disjoint open sets U_1 , U_2 with $|U_1| = |U_2| = k$, and then take $\{x_1, ..., x_n\} \subseteq U_1$ and $y \in U_2$. Since X is nH_3 , there exists a homeomorphism $h: X \to X$ such that $h(\{x_2, ..., x_n\}) = \{x_2, ..., x_n\}$ and $h(x_1) = y$. Hence $h(U_1) \cap U_2$ is an open set containing y of cardinality less than k, a contradiction. II. n > k. Let $A = \{x_1, ..., x_n\}$, so there exist open sets U_1 , U_2 of size k with $x_n \in U_1$ and $x_n \in U_2$. Hence, there exists a homeomorphism $h: X \to X$ such that $h(\{x_2, ..., x_n\}) = \{x_1, ..., x_{n-1}\}$ and $h(x_1) = x_n$. So, $h(U_1) \cap U_2$ is an open set containing x_n with $|h(U_1) \cap U_2| < k$ since $x_1 \in h(U_1)$ and $x_1 \notin U_2$. This contradiction completes the proof. **Theorem 2.3.** If |X| > 2 and X is a $2H_1$ -space, then X is homogeneous. **Proof.** Let $x, y \in X$. Let $z \in X \setminus \{x, y\}$. Then there exists a homeomorphism $h : X \to X$ such that $h(\{x, z\}) = \{y, z\}$. If h(x) = y we are done. If h(x) = z then hoh is the required homeomorphism. **Theorem 2.4.** Every $2H_2$ -space is $2H_4$ -space provided that $|X| \ge 5$. **Proof.** Take $\{x, y\}$ and $\{u, v\}$ in X. We shall find a homeomorphism $h: X \to X$ such that h(x) = u and h(y) = v. Consider the sets $\{x, y\}$ and $\{x, z\}$ where $z \in X \setminus \{x, y, u, v\}$. Hence there exists a homeomorphism $h_1 : X \to X$ such that $h_1(y) = z$ and $h_1(x) = x$. Consider the sets $\{x, z\}$ and $\{u, z\}$, hence there exists a homeomorphism $h_2 : X \to X$ such that $h_2(x) = u$ and $h_2(z) = z$. Finally, consider the sets $\{u, z\}$ and $\{u, v\}$. So, there exists a homeomorphism $h_3 : X \to X$ such that $h_3(z) = v$ and $h_3(u) = u$. Therefore, $h_3 o h_2 o h_3 h_$ The condition that $|X| \ge 5$ is necessary, because; Sierpenski space is $2H_2$ which is neither $2H_3$ nor homogeneous. The next example is also $2H_2$ -space which is not $2H_3$ -space although it is homogeneous. **Example 2.5.** Let $X = \{1, 2, 3, 4\}$ be topologized by the base $\beta = \{\{1, 2\}, \{3, 4\}\}\}$. Hence $(X, \tau(\beta))$ is a homogeneous space which is not $2H_3$ -space. It is easy to see that every $2H_2$ -space with cardinality 3 has the trivial topology (discrete or indiscrete), and hence it is $2H_3$ -space. Since every $2H_4$ -space is $2H_3$ -space, hence every $2H_2$ -space is $2H_3$ -space. Also, the real R with the left ray topology is $2H_1$ which is not $2H_2$. Hence we have the following diagram: #### 3. 3H3-Spaces In this section we shall study the implications of 3-homogeneous spaces of type 3. We shall see that such spaces are bihomogeneous and are 2-homogeneous spaces of type 4. Let us start with the following result. **Theorem 3.1.** Every $3H_3$ -space is bihomogeneous provided that $|X| \ge 4$. **Proof.** Let $x, y \in X$ with $x \neq y$. We shall show that there exists a homeomorphism $h: X \to X$ such that h(x) = y and h(y) = x. Since $|X| \geq 4$, there are two distinct points u, v in $X \setminus \{x, y\}$. Consider the triple $C_1 = \{u, x, y\}$, so there exists a homeomorphism $h_1 : X \to X$ such that $h_1(C_1) = C_1$ with $h_1(x) = y$. If $h_1(y) = x$ we are done. If $h_1(y) = u$, consider the triples C_1 and $C_2 = \{v, x, y\}$. Hence there exists a homeomorphism $h_2 : X \to X$ such that $h_2(C_1) = C_2$ and $h_2(y) = y$. If $h_2(x) = v$, then h_2oh_1 is the required homeomorphism. If $h_2(x) = x$, consider the triples C_2 and $C_3 = \{u, v, y\}$, hence there exists a homeomorphism $h_3 : X \to X$ such that $h_3(C_3) = C_2$ and $h_3(y) = y$. So we have two cases: Case 1: $h_3(u) = v$ and $h_3(v) = x$, in this case the homeomorphism $h = h_3 o h_2 o h_1$ is the required homeomorphism. Case 2: If $h_3(u) = x$ and $h_3(v) = v$, consider the homeomorphism $h = h_3 o h_1$. Another consequence of 3H₃-spaces is the following. **Theorem 3.2.** If X is an $3H_3$ -space then for every $x, y, z \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y and h(z) = z provided that $|X| \ge 4$. **Proof.** Let x, y, z be any three points in X. Fix $u \in X \setminus \{x, y, z\}$, if $x \neq y$, consider the triples $C_1 = \{u, x, z\}$ and $C_2 = \{x, y, z\}$. Hence there exists a homeomorphism $h_1 : X \to X$ such that $h_1(C_1) = C_2$ with $h_1(z) = z$. If $h_1(x) = y$ we are done. If $h_1(x) = x$, consider the triples C_2 and $C_3 = \{y, u, z\}$. So, there exists a homeomorphism $h_2 : X \to X$ such that $h_2(C_2) = C_3$ with $h_2(z) = z$. If $h_2(x) = y$, then h_2 is the required homeomorphism. If $h_2(x) = u$, then $h = h_1 o h_2$ is the required homeomorphism. Now, we shall give the main result in this section. **Theorem 3.3.** Every $3H_3$ -space is $2H_3$ -space provided that $|X| \ge 6$. **Proof.** Let $A = \{x_p, x_2\}$ and $B = \{y_p, y_2\}$ be any two doubletons. So, we have the following cases: I. $A \cap B = \emptyset$. Consider the triples $C_1 = \{y_p, x_p, x_2\}$ and $C_2 = \{x_p, y_p, y_2\}$. Hence, there exists a homeomorphism $h_1: X \to X$ such that $h_1(C_1) = C_2$ and $h_1(x_2) = y_2$. If $h_1(x_1) = y_1$, we are done. If not, that is, $h_1(x_1) = x_1$, consider the triples C_2 and $C_3 = \{u, y_p, y_2\}$ where $u \in X \setminus \{x_p, x_2, y_p, y_2\}$. So, there exists a homeomorphism $h_2: X \to X$ such that $h_2(C_2) = C_3$ and $h_2(y_2) = y_2$. If $h_2(x_1) = y_1$ then h_2oh_1 is the required homeomorphism. If $h_1(x_1) = u$, consider the triples $C_4 = \{u, v, y_2\}$ and $C_5 = \{v, y_p, y_2\}$ where $v \in X \setminus \{u, x_p, x_2, y_p, y_2\}$. Hence, there exists a homeomorphism $h_3: X \to X$ such that $h_3(C_4) = C_5$ and $h_3(y_2) = y_2$. If $h_3(u) = y_1$, then $h_3oh_3oh_2oh_1$ is the required homeomorphism. If $h_3(u) = v$, then $h_3oh_3oh_2oh_1$ is the required homeomorphism. II. A = B, in this case, assume $A = \{x, y\}$, this case follows from Theorem 3.1. III. $|A \cap B| = 1$. If $A = \{x, z\}$ and $B = \{y, z\}$, then by Theorem 3.2, we are done. If $A = \{x, z\}$ and $B = \{z, y\}$, choose $u \in X \setminus \{x, y, z\}$. Consider the triple $C_6 = \{x, y, z\}$. Hence there exists a homeomorphism $h_4: X \to X$ such that $h_4(C_6) = C_6$ and $h_4(z) = y$. If $h_4(x) = z$, then we are done. If $h_4(x) = x$, then by Theorem 3.2, there exists a homeomorphism $h_5: X \to X$ such that $h_5(x) = z$ and $h_5(y) = y$, so $h_5 \circ h_4$ is the required homeomorphism. Corollary 3.4. Every $3H_3$ -space is $2H_4$ -space. ### 4. The N-Homogeneity of Type I and their Consequences In this section we give a characterization of nH_4 -spaces. Also, we shall draw the main lines for possible implications between these kinds of n-homogeneity spaces. It is obvious that every nH_4 -space is kH_i -space for all $1 \le k \le n$ and i = 1, 2, 3, 4. We also saw in Section 3 that, every $3H_3$ -space is kH_i -space where k = 1, 2 and i = 1, 2, 3, 4. Before continuing this study let us give the following characterization. **Theorem 4.1.** Let n be a positive integer. A space X is n H_3 if and only if X satisfies the property that for any two subsets $A = \{x_1, ..., x_{n-1}\}$ and $B = \{y_1, ..., y_{n-1}\}$ of X both of (n-1) elements, and for any $z \in X \setminus (A \cup B)$, there exists a homeomorphism $h: X \to X$ such that $h(x_i) = y_i$; i = 1, ..., n-1 and h(z) = z. **Proof.** (\Leftarrow) Let $A = \{x_p, ..., x_n\}$ and $B = \{y_p, ..., y_n\}$. We shall show that there exists a homeomorphism $h: X \to X$ such that $h(x_i) = y_i$ for all i = 1, ..., n. By assumption, there are homeomorphisms $h_p, h_2: X \to X$ such that $$h_1(x_i) = y_i$$ for $i = 1, ..., n-1$; and $h_1(x_n) = x_n$, $h_2(y_i) = y_i$ for $j = 1, ..., n-1$; and $h_2(x_n) = y_n$. Hence, $h = h_2 o h_1 : X \rightarrow X$ is the required homeomorphism. The converse is obvious. **Theorem 4.2.** If X is $2H_3$ -space then $X \setminus \{u\}$ is homogeneous for every $u \in X$. For a finite space X of cardinality n we have the following result for homogeneous space of type 1. **Theorem 4.3.** Let X be a space of cardinality n. Then X is a kH_1 -space if and only if X is $(n-k)H_1$, where $1 \le k \le n-1$. **Question 4.4.** Is every nH_1 -space an (n-1) H_1 -space? $(n \ge 3)$ The following typical example solves Question 4.4 partially. **Example 4.5.** Let $$X = \{x_{1},...,x_{n}\}$$ be topologized as follows $\tau = \{\emptyset, \{x_{1}\}, \{x_{1}, x_{2}\}, ..., \{x_{1}, ..., x_{n-1}\}, X\}.$ Then, X is nH_1 , but it is not kH_1 for all k = 1, 2, ..., n-1. Moreover, in Example 2.5, X is $3H_1$ -space with |X| = 4 but it is not $2H_1$. We guess that if X is infinite then every nH_1 -space is also a kH_1 -space for all positive integers $k \le n$. It is easy to see that every nH_2 -space is an nH_1 -space, but the converse is not true. In fact R with the left ray topology is an nH_1 for all n positive integer, but is not nH_2 -space for all $n \ge 2$. For nH_I -space we have the following results. **Theorem 4.6.** If X is nH_1 and $|X| \ge n+1$, then X is homogeneous. **Proof.** Let $x, y \in X$, since $|X| \ge n+1$, there exists a set of distinct points $\{x_p, \dots, x_{n-1}\} \subseteq X \setminus \{x, y\}$. Since X is an nH_1 -space, there exists a homeomorphism $h: X \to X$ such that $h(\{x_p, \dots, x_{n-p}, x\}) = \{x_p, \dots, x_{n-p}, y\}$. If h(x) = y, we are done, if not, without loss of generality, assume that $h(x) = x_1$. If $h(x_1) = y$, then $h(h(x)) = h(x_1) = y$, and hence the composition hoh is a homeomorphism from X onto itself and takes x into y. If $h(x_1) \ne y$, then $h(x_1) = x_j$. Continuing this process, there exists $k \le n$, such that $h^k(x) = y$, where $h^k = hoho...oh$; k times. Corollary 4.7. If X is nH_2 and $|X| \ge n+1$, then X is homogeneous. **Proof.** Since every nH_2 -space is nH_1 -space and $|X| \ge n+1$, then by Theorem 4.6, X is homogeneous. **Theorem 4.8.** If X is nH_2 and $|X| \ge 2n-1$, then X is an (n-1) H_2 -space, and hence kH_2 for all positive integers k < n. **Proof.** Let $A = \{x_p, ..., x_{n-1}\}$ and $B = \{y_p, ..., y_{n-1}\}$. Hence there exists $z \in X \setminus (A \cup B)$. Since X is an nH_2 -space, there exists a homeomorphism $h: X \to X$ such that $h \{x_p, ..., x_{n-1}, z\} = \{y_p, ..., y_{n-1}, z\}$ and, h(z) = z and h(u) = u for all $u \in A \cap B$. Hence h(A) = B and h(u) = u for all $u \in A \cap B$. Therefore, X is $(n-1)H_2$. #### REFERENCES - [1] J. V. Mill and G. M. Reed (Editors), Open Problems in Topology, Elsevier Science Publishers B. V., 1990. - [2] J. K. Phelps, A condition under which 2-homogeneity and representability are the same in continua, *Fund. Math.* XXXI(1984), pp. 89-98. - [3] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Springer-Verlag, 1978. - [4] G. S. Ungar, Countable dense homogeneity and n-homogeneity, Fund. Math. XCIX (1978), pp. 155-160.