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ABSTRACT

In this paper we introduce new types of n-homogeneity, we call them n-homogeneous of type 2 and type
3, denoted by nH,, nH, respectively. We show that every 3H,-space is bihomogeneous space. Also, every
finite nH,-space has the trivial topology (discrete or indiscrete). We show that every 3H,-space is strong
2-homogeneous. We study the implications between these spaces with the well known spaces, strongly n-

homogeneous spaces and weakly n-homogeneous spaces.
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1. Introduction

A space X is called homogeneous if for every x, y in X there exists a homeomorphism % : X — X such
that 4(x) = y. Several authors studied the n-homogeneity spaces, for instance [1], [2] and [4]. In this section
we shall give the definitions besides with the obvious implications between these definitions. For a set X,
by |X | we mean the cardinality of X. Let us start with the following definition, one may consult [1].

Definition 1.1. A space X is called bihomogeneous provided every two points in X can be interchanged
by means of an autohomeomorphism on X.

Although every bihomogeneous space is homogeneous, the converse is not true. In fact the reals R with
the left ray topology is homogeneous but not bihomogeneous. For the next definition one may see [2]. For

a positive integer n we have the following definitions.

Definition 1.2. A space X is n-homogeneous of type 1, denoted by nH,, if for every two subsets of X
each having exactly » elements 4 = {x, ... x,} and B= {y, ..., y,}, there exists a homeomorphism h of X
onto itself such that #(4) = B.

Definition 1.3. A space X is called n-homogeneous of type 2, denoted by nH,, if for every two subsets
of X each having exactly »n elements 4 = {x, .., x,} and B= {y, ..., y,}, there exists a homeomorphism %
of X onto itself such that #(4) = B and, h(z) = z forallz € 4 N B.

Definition 1.4. A space X is called n-homogeneous of type 3, denoted by nH,, if for every two subsets of
X each having exactly n elements 4 = {x, ..., x,} and B = {y » - Yu)» there exists a homeomorphism / of X
onto itself such that 4(4)=B and A(x,) = y,.

Definition 1.5 [4]. A space X is called n-homogeneous of type 4, denoted by nH,, if for every two sub-
sets of X each having exactly n elements 4 = {x,, ..., x,} and B = {y,, ..., y,}, there exists a homeomor-
- phism 4 of X onto itself such that 4 (x,) =y, foralli=1,..., n.

Notice that n-homogeneous spaces of type 4 were introduced before, and in [4] such spaces are called
strongly n-homogeneous. It is obvious that every nH,-space is an (n-1)H,-space, and hence every nH -
space is homogeneous provided that | x | >n.

2. 1- and 2-Homogeneous Spaces of all Types

In this section we shall study all implications between 1-, and 2-homogeneous spaces of type 1, type 2,

type 3, and type 4. Also, we shall give a characterization of n-homogeneous spaces of type 4. Besides we
have the following results.
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Theorem 2.1. Every 2H -space (2H,-space) is homogeneous provided that | X| > 3.

Proof. Letx, y € X. Letz € X'\ {x, y} and consider the sets {x, z} and {y, z}. So, there exists a homeo-
morphism 4 : X — X with A(x) = y.

Remark. In the proof of Theorem 2.1 we assumed that| X| > 3. In fact, if| X| =2 and Xis 2H s (CH,),
then the topology on X is trivial (discrete or indiscrete) and hence it is homogeneous. Also, one can notice
that if | X| < n, then X is nH, —space form =1, 2, 3, 4.

Theorem 2.2. Let X be a finite space with [ X [> n, then X is an nH ~space iff X has the trivial topology

(discrete or indiscrete).

Proof. Suppose on the contrary, that is, X is finite and 7T is not the trivial topology. Hence, there exists
a proper open subset U of X. Let x, € U, and let k = | N{Vetix, € ¥}, since T is not trivial then & >
1. Since X 1s homogeneous, and N{V e 1: x, € V} is the smallest open set containing x,, then for x € X,
there exists a unique open set U, containing x of cardinality , in fact such an open set U._ is the smallest
open set containing x.

Let x, € X, fix the unique open set le containing x, with | ij | = k. Since 7 is not trivial, then there
exists x, € X'\ Ux]. Consider the unique open set sz containing x, with | Ux2| = k. Hence le N sz =.

If X\ (le M sz) is not empty continue in this process. Finally, we get X = unizl Uxi, each U"i 1s open with
cardinality k. We have the following cases:

L n < k. Choose disjoint open sets U,, U, with |U, |= |U, |= k, and then take {x, ..., x,} < U, and
vy € U,. Since X is nH;, there exists a homeomorphism 4 : X — X such that A({x,, ..., x,}) = {x,, ..., x,} and
h(x;) = y. Hence h(U,;) N U, is an open set containing y of cardinality less than &, a contradiction.

I.n>k Letd = {x, ..., x,}, so there exist open sets U,, U, of size k with x, € U, and x, € U,. Hence,
there exists a homeomorphism 4 : X — X such that A({x,, ..., x,}) = {x,, ..., x,,} and % (x,) = x,. So,.
h (U)) N U, is an open set containing x, with | #(U,) N U, | < k since x, € h(U,) and x, ¢ U,. This con-
tradiction completes the proof.

Theorem 2.3. If | X |>2and Xis a 2H ,~space, then X is homogeneous.

Proof. Let x, y € X. Let z € X\ {x, y}. Then there exists a homeomorphism # : X — X such that
h({x, z}) = {y, z}. If h(x) = y we are done. If A(x) = z then hoh is the required homeomorphism.

Theorem 2.4. Every 2H y-space is 2H ~space provided that lx |>5.

Proof. Take {x, y} and {u, v} in X. We shall find a homeomorphism % : X — X such that A(x) = u and
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h(y) = v. Consider the sets {x, y} and {x, z} where z € X\ {x, y, u, v}. Hence there exists a homeomor-
phism £, : X — X such that 4, (y) =z and &, (x) = x. Consider the sets {x, z} and {u, z}, hence there exists
a homeomorphism 4, : X — X such that &, (x) = u and 4, (z) = z. Finally, consider the sets {u, z} and
{u, v}. So, there exists a homeomorphism 4, : X — X such that /,(z) = v and &, (u) = u. Therefore, h,0h oh,
is the required homeomorphism.

The condition that | X | > 5 is necessary, because; Sierpenski space is 2H, which is neither 2H, nor

homogeneous. The next example is also 2H -space which is not 2H -space although it is homogencous.

Example 2.5. Let X = {1, 2, 3, 4} be topologized by the base B = {{1, 2}, {3, 4}}. Hence (X, T (B)) is
a homogeneous space which is not 2H -space.

It is easy to see that every 2H ,-space with cardinality 3 has the trivial topology (discrete or indiscrete),
and hence it is 2H -space.

Since every 2H -space is 2H -space, hence every 2H -space is 2H -space. Also, the real R with the left
ray topology is 2H, which is not 2H,. Hence we have the following diagram:

diagram:

2H ¢ 2H,

‘,
| | X | #2,4
| X >2 | XI>2
1H,

» OH, &—P»2H,— P 1H,

3. 3H3-Spaces
In this section we shall study the implications of 3-homogeneous spaces of type 3. We shall see that such

spaces are bihomogeneous and are 2-homogeneous spaces of type 4. Let us start with the following result.

Theorem 3.1. Every 3H -space is bihomogeneous provided that X 1> 4.

Proof. Let x, y € X with x # y. We shall show that there exists a homeomorphism 4 : X — X such that
h(x) = y and h(y) = x. Since | X | > 4, there are two distinct points u, v in X\ {x, y}. Consider the triple
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C; = {u, x, y}, so there exists a homeomorphism %, : X — X such that 4, (C) = C, with h,(x) = y.
If h,(») = x we are done. If 4 (y) = u, consider the triples C, and C, = {v, x, y}. Hence there exists a home-
omorphism 4, : X — X such that 4,(C)) = C, and h,(y) = y. If h,(x) = v, then &0k, is the required home-
omorphism. If /,(x) = x, consider the triples C, and C, = {u, v, ¥}, hence there exists a homeomorphism
h,: X — X such that 4,(C,) = C, and &,(y) = y. So we have two cases:

Case 1: 2 (u) = v and &, (v) = x, in this case the homeomorphism 4 = /,0h 0k, is the required homeo-
morphism.

Case 2: If 4 (u) = x and h,(v) = v, consider the homeomorphism % = h.0h,.
Another consequence of 3H,-spaces is the following.

Theorem 3.2. If X is an 3H -space then for every x, y, z € X there exists a homeomorphism h : X — X
such that h(x) =y and h(z) = z provided that | x| > 4.

Proof. Let x, y, z be any three points in X. Fix u € X\ {x, 3, z}, if x # y, consider the triples
C,={u x, z} and C, = {x, y, z}. Hence there exists a homeomorphism 4, : X — X such that 4 (C)) = C,
with & (z) = z. If A (x) = y we are done. If & (x) = x, consider the triples C, and C, = {y, u, z}. So, there
exists a homeomorphism 4, : X — X such that 4 (C,) = C, with A (z) = z. If h (x) = y, then A, is the required

homeomorphism. If /,(x) = u, then & = h oh, is the required homeomorphism.

Now, we shall give the main result in this section.

Theorem 3.3. Every 3H ~space is 2H -space provided that | x| > 6.
Proof. Let 4 = {x, x,} and B = {y, y,} be any two doubletons. So, we have the following cases:

L. 4N B=0. Consider the triples C, = {y, x,, x,} and C, = { x, y,, ,}. Hence, there exists a homeo-
morphism #, : X — X'such that 4, (C)) = C,and A (x,) = y,. If &, (x,) = y,, we are done. If not, that is, / (x )
= x,, consider the triples C, and C, = {u, y,, y,} where u € X\ {x, x,, ¥, ¥,}. So, there exists a homeo-
morphism 4, : X — X such that 1 (C,) = C, and h(y,) = y,. If h(x,) =y, then h,oh, is the required home-
omorphism. If 4 (x,) = u, consider the triples C, = {u, v, y,} and C; = {y, Y, y,t where ve X\ {u, x, x,
Yp ¥,4- Hence, there exists a homeomorphism 4, : X — X such that ~(C) = C; and A (y,) = y,.
If h(u) =y,, then h,0h 0h,0h is the required homeomorphism. If 2(u) = v, then & ,0h,0h ,0h, is the required

homeomorphism.
II. A = B, in this case, assume 4 = {x, y}, this case follows from Theorem 3.1.
L |[ANBl=1.1f4= {x, z} and B = {y, z}, then by Theorem 3.2, we are done. If 4 = {x, z} and B =

{z, y}, choose u € X\ {x, y, z}. Consider the triple C, = {x, y, z}. Hence there exists a homeomorphism
h,: X — Xsuchthath(C)=C, and h[(z) = y. If h (x) = z, then we are done. If 4 (x) = x, then by Theorem
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3.2, there exists a homeomorphism 4 : X — X such that 4 (x) = z and A (y) =y, 50 h s;0h, is the required

homeomorphism.
Corollary 3.4. Every 3H -space is 2H jspace.

4. The N-Homogeneity of Type I and their Consequences

In this section we give a characterization of nH -spaces. Also, we shall draw the main lines for possible
implications between these kinds of n-homogeneity spaces. It is obvious that every nH -space is kH -space
forall 1 <k<mandi=1,2,3, 4. We also saw in Section 3 that, every 3H -space 1s kH -space where
k=1,2andi=1,2,3, 4. Before continuing this study let us give the following characterization.

Theorem 4.1. Let n be a positive integer. A space X is n H, if and only if X satisfies the property that
for any two subsets A= {x,...x_} and B={y,...y ,} of X both of (n-1) elements, and for any z € X\ (4
U B), there exists a homeomorphism h : X — X such that h(x)=y,; i=1, ..., n-1 and h (z) = z.

Proof. (<) Let 4 = {x,...x } and B = {y,...,y }. We shall show that there exists a homeomorphism
h : X — X such that h(x) =y, for all i = I, ..., n. By assumption, there are homeomorphisms 4, ,: X — X
such that

h(x)=yfori=1,.,n-l;and h(x)=x,

hz(yj) =Y forj=1, .., n-I;and h,(x ) = y,.

Hence, & = h,oh, : X — X is the required homeomorphism. The converse is obvious.

Theorem 4.2. If X is 2H -space then X \ {u} is homogeneous for every u € X.

For a finite space X of cardinality n we have the following result for homogeneous space of type 1.

Theorem 4.3. Let X be a spdce of cardinality n. Then X is a kH -space if and only if X is (n-k)H , where
1<k<n-l.

Question 4.4. Is every nH ~space an (n-1) H - space? (n = 3)

The following typical example solves Question 4.4 partially.

Example 4.5. Let X = {x,,...,.x } be topologized as follows

T={D, {x,},{x, x,}, o {x,x ) XY
Then, X i1s nH , but it is not kH, forallk=1, 2, .., n-1.
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Moreover, in Example 2.5, X is 3H -space with | X |=4 but it is not 2H ;- We guess that if X is infinite
then every nH -space is also a kH -space for all positive integers k < n.

It is easy to see that every nH -space is an nH -space, but the converse is not true. In fact R with the left
ray topology is an nH, for all n positive integer, but is not nH -space for all n > 2.

For nH -space we have the following results.

Theorem 4.6. If X is nH, and | X | > n+ 1, then X is homogeneous.

Proof. Let x, y € X, since | X | > n+1 , there exists a set of distinct points {x peeoX 3 S X\ {x, y}. Since
X 'is an nH -space, there exists a homeomorphism % : X — X such that h({x, ... x, , x}) = {x,...x _, y}.
If h(x) = y, we are done, if not, without loss of generality, assume that A(x) = x,. If b (x)) =y, then
h(h(x)) = h(x,) = y, and hence the composition ho# is a homeomorphism from X onto itself and takes x into
y.If h(x,) #y, then h(x )= X Continuing this process, there exists k < n, such that #* (x) =y, where h* =
hoho...oh; k times.

Corollary 4.7. If X is nH, and |X |>n+1 , then X is homogeneous.
Proof. Since every nH -space is nH ~Space and | X| >n+1, then by Theorem 4.6, X is homogeneous.

Theorem 4.8. [f X is nH, and| X | > 2n-1, then X is an (n-1) H,-space, and hence kH, for all positive
integers k <n.

Proof. Let 4 = {x,...x } and B = {y,--y,,}- Hence there exists z € X\ (4 U B). Since X is an nH,-
space, there exists a homeomorphism 4 : X — X such that # {x peooXy p 21 =y, 24 and, A(z) =z and
h(u) = u for allu € A N B. Hence h(4) = B and h(u) = u forallu € A N B. Therefore, X is (n-1)H,,
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