Qatar Univ. Sci. J. (1993), 13(1): 5-9

DECOMPOSITION OF THE SET OF CONDITIONALLY
EXPONENTIAL CONVEX FUNCTIONS

A. S. OKB EL BAB* and M. S. EL-SHAZLI**
*Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
**Mathematics Department, Industrial Institute, El-Madina, Saudi Arabia

ib g il | igaod | deaN ) Jslll e gazne iy 4SS

Sl

Lol Ba,dail) LBl g Tdle sla¥ CF juall byl pudsis sall 1ia
G sl § 15l le Ciyall muplpasilly gyl Lall 2ns¥] ol e panl

Key Words: Conditionally Exponential Convex Functions, C* - algebra.

ABSTRACT

The theory of C* -algebra is used to develop a connection between the local extreme points and the topology of the spectrum space G.

INTRODUCTION

Berg, Christensen and Ressel(4) and independently
Okb-El-Bab and EIl-Shazli(12)  studied conditionally
exponential convex functions on semigroups. For G
compactly generated, a compact base for E, (G), the set of

conditionally exponential convex functions defined on a
locally compact group G, was constructed in(11). Also, the
auther in(11) obtained the extreme points of that base.

In this article we usé the theory of C* -algebra to develop a
connection between the local extreme points and the topology
of the spectrum space G. The main advantage of C*
-algebraic approach, besides its generality, is that topological
considerations come to the foreforent.

DEFINITIONS AND NOTATION

Let G be a separable locally compact group equipped with
left Haar measure dx and modular function A, where the iden-
tity element is denoted by e, and let G be the set of irreducible
representations of G. If G is abelian, G is its dual. By C. (G)
(C% (G) we denote the set of compactly supported continuous
functions on G (with total left Haar integral zero(5).

Let C* (G) be the inveloping C* -algebra of L! (G)
equipped with the involution # defined by f# (x) = A (x1) f*,
where f+ (x) = f( x-1). The dual of C* (G) is B (G) and its
double dual is W* (G). For the universal representation @ we
write o () to indicate that belongs to W* (G)(7).

Now let S be a separable compact convex set. A subset F

of S is called a face if each line segment in S whose interior
intersects F is contained in F. The complementary set F' of F
is the union of all faces of S disjoint from F. If F is a closed
face and F' is also a face then F is called a.closed split face. In
this case, S is the direct convex sum of F and F'; i.e., every

x € S can be written uniquely in the form x =y + (1-2A) z,
0<A<l,yeF zeF(Q2).

If % is a subset of the set ext S, of extreme points of S, its
facial closure is F [ ext S, where F is the smallest closed split
face of S containing . The topology defined in this way is
called the facial topology. This topology is coaser than the
weak * -topology (2).

In the following we write P (G) for the set of all
exponentially convex functions defined on G; i.e., functions
satisfying

n
= wgig)eic20,
i, j=1

where gy, ..., gy € G and ¢y, ...,, ¢; € R. The set of elements
from P (G) with norm equals 1 is P; (G). Clearly P (G) is a
convex set(3). Also we write Eqg (G) for the set of all

conditionally exponential convex functions defined on G and
vanishing at the group identity; i.e., functions satisfying
n
T wg+vig)-vEig)leic20,
1, J=1

where g1, ..., &, € G and ¢y, ..., ¢, € R(4,12).
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Elements of Eg (G) can be characterized geometrically as
semi-tangents to P (G) at the identity, and if v, - ¢ € Eg (G)

then v becomes a tangent vector to Py (G) at the identity.

By a Levy weight for w € Eg (G) we mean the linear

functional (also deonoted by ) defined by
V (a) = (1, dy a),a € domain (dy),

(0 is a linear functional from C* (G) to C* (G) which is
densely defined and w' (ker )t 2 0. If My, = N#W Ny, and
N\V ={ae kerl |W (a# a) < oo}, then the weight is called
local if sup {pq (a w)’(x >0} =0 for all a € (ker 1)*,

where .
Po (& ) =inf {y (s) + t(x| ass+tz];t20,s € M+\V}’

z1 is the central support of the weak closure of ker 1 in
W* (G) and (ker 1)1 is the unit ball of ker 1(6).

Given a continuous unitary representation U of G on a
Hilbert space H, a continuous map ¢:G — H such that ¢ (e) =
0 and ¢ (xy) = ¢ (x) +U (x) c (y) is called a l-cocycle for U.
The additive group of such cocycles is denoted by Z' (U).
The subgroup B' (U) of 1-cobounaries is that set of cocycles

of the form ¢ (x) = U (x) £ — &, £ € H. The quotient H' (U) =
z' (UYB' (U) is called the first cohomology group of U(8).

Finally, for y, ¢ € Eo (G) we say that v dominates y if

v—¢ € Eg (G). If ¢ and v dominate each other then they are
equivalent, and they are weakly equivalent if one is
equivalent to a positive multiple of the other(6).

A DECOMPOSITION THEOREM FOR E | (G)

4
In this section we study the connection between the
topology on G and the structure of Eg (G). Let C%, (G) be the

smallest C* -algebra containg C* (G) and has an identity and
let S be its state space which is compact in the relative weak
*-topology.

If C* (G) has an identity then S coincides with P (G).
Otherwise Py (G) is a split face in S, and S is the direct

convex sum of Py (G) and the state fg, defined by fj | (&)
=0,

Let {Op |n> 1} be a collection of relatively weak * -open
subsets of ext S such that o, &0y NextS COp.1 and
Mn On = {1}. If Up is the irreducible representation of G
obtained from p € Sn M ext S then we define the two sided
ideal In = n {ker Up} ¥n. The closure of Op in the facial
topology on ext S is Fp m ext S F = I1,, is the closed split

face of S annihilated by Ij. Finally, let q € W* (G) and z]
be the central supports of I, and ker 1, respectively. Since

On-120p 2 {1}, wehaveqp-1 <qn<7.

In the following we prove that the Levy weights of

elements of Eg (G) are bounded on Ij,.

Lemma 3.1

If V is a weak* open neighborhood of the constant
function 1 is S, then there exist 8 > 0 and g € C¢ (G) such

that i) g2 0,1ii) 0<w (g) < 1, i) (1Lo@E)=]gx)d=1,
and iv) for each f € S\V we have (f, ® (g) < 1- 8.

Proof

LetL={ge Cc(G) | g20,/g(x)dx=1}and D (g) =
{feS | g € L and (f, o (g#* g) =1} where * denotes the
usual convolution. For f € D (g) we can write f = A p+ (1-1)
fo for some p € P (G) and 0 < A < 1. Simple calculations _
show that L =1 and f = p; i.e., f € P1 (G). Now, forf e n {D
(2) | g € L} we have ‘

[T (xy)) g (x) g (y) dxdy = 0, hence

(1-f (xy)) g (x) g (¥) dxdy = 0 on G X G. Choosing the
support of g to contain any compact set in G we get f =1,

If V is a weak-* open neighborhood of 1 in S, then S\V is
compact and

0=\W)n (" {D(@ | geLy

—SWnN (h n{fes| G o@Ehe)zlea).
gel €>0
By the finite intersection property, there exist €1, ..., €n >0
and g1, ..., gm € L such that

m
N {fes|d o (gﬂzt xgp) > 1 -eg } A (S\WV).
-1

Now, conditions i) -iv) are easily satisfied for 8 = min (eg
-1 m

/m)and g=i1; z

¢ =0

gy * g¢  and the lemma follows.

Lemma 3.2

Foreach n 2 1 there exist gn € C¢ (G) with g 2 0,
I/gn(x) dx =1 and By € W* (G) such that qp = By o (e -
gn) where 3¢ is the point mass at e.

Proof

Suppose that Vy is a neighborhood of the identity is S
containted in the face Fp annihilated by I,. For this

neighborhood we construct g € C¢ (G) and 8, > 0 as in
Lemma 3.1. Then

[l'ane(gn) | | =sup {(p.anw @) | pe S}
= sup {(p, @ (gn) | p e Sy}
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< sup {(p, @ (&n)) | peS\Wpk<1-8p.

o0
Thus the geometric series 3 k converges to an
element K 2%((1) (&n))

Bpn € W* (G) of norm at mostX (1-3p)k = -1 . clearly,
Bnw (8¢ -gn) =4qn./ k=0

Lemma 3.3.

If y is the Levy weight of an element of Eg (G) then there
exists pp € P (G) such that \lfl In = pn| I, for all values of
n.’

Proof

Leta € Iy C ker 1. Then
0<vy (a#a) =y (qna¥aqp)
=y (® (B¢ - gn) Bn ¥ a By o (B¢ -gn))
=y (® (un) Bp a¥ aBp @ (up)) ,

where iy is the measure defined by dyuy = 8¢ - gn dx. It is
clear that o € MO (G), the set of compactly supported Borel
measure on G of total mass zero. Since

oo jee]

2 a(o(gnk= =
k

aqn (0 (gn)k ~> aBy

we have a By e Iy < C* (G) Applying Lemma 2.1 in (11)
we obtain

v (a#f &)= (-w "y B ataBp).
<-yhae) 11Ball2 [1a [12 <-82hy e [1all2
This shows that '\V’ In is a bounded weight. On the other

hand, we define pp by the product pp () = yHn (B, . Bp).
Thenpy € P (G)andy| In=pp| I/

Corollary 3.4
A dominates pp, (€) - pp in Eg (G).
Theorem 3.5

Suppose that pp ¢ € Eg (G) has a local Levy weight and F
1s the closed split face of S given by F = m Fp. Then for
each o € MO (G) such that -yl (e) # 0 we have -ywH-yH (e)
e F.

Proof

If the Levy weight for 1w is local then, by definition, yr
does not dominate any semitangent of the form p (e) -p, p € P
(G). This implies that \|f| In =0 for all n 2 1 and hence
\ull| In = O for each p € MO (G). This means that -yM is
annihilated by the closed two-sided ideal ~~ 1, =FL. //

n

Theorem 3.6

Each ¢ € Eq (G) can be written uniquely in the form y =
W1 +¥2,¥1, V2 € Eo (G), where |
i) for each u € MO¢ (G) such that -yl (e) # 0, ~wHy/-yHy
(e)eF
ii) y2 = lim (pn (&) -pn). where pn € P(G) and pn | In =
yi | Iy .

Proof

We note that if Yy = 1im (pp (¢) -pp), then from Corollary

n
3.4, v2 , ¥1, = ¥ -y2 belong to Eg (G). Moreover, y1
vanishes on each I, and the proof of Theorem 3.5 applies. //

Now, let U be a factor representation of G. By Proposition
5.2.7 of(7) and Corollary 2 of(1) ker U is a primitive ideal of
C* (G).

Definition 3.7(9)

A factor representation U of G is said to be separated from
the trivial representation if there exist disjoint open sets V1

and V7 in Prim (G), the primitive ideal space of C* (G), such
thatker 1 € V1 andkerU € V).

A group G has a property (P) if each factor representation
of G on a separable Hilbert space which is separated from the

trivial representation has a trivial first cohomology group HI1
).

In fact, every locally compact group has this pfoperty. As
an application of Theorem 3.6 we have:

Theorem 3.8

Let G be a separable locally compact group.
) IfF=n{ olo is an open neighborhood of the trivial

representation in G}.and if U € G-F, then Hl (U)=0
ii) G has property (P).

Proof
i) We need the following Lemma for proving this part.

Lemma 3.9

If U is an irreducible representation of G and if ¢ V' (U)

then ¢ (x) = I | ¢ (x) f | 2/2 generates an extreme ray in
Eg (G); i.e., each of its dominated elements is either a

tangent vector or weakly equivalent to y.
Proof
Let ¢ € Eg (G) be dominated by v and let G = GXmR be

the multiplier extension of G by R w.r.t. the trivial action of
G on R, defined by the multiplier

m(g, h) =- (¢ (h), ¢ (y)) and y' (g, ) =¥ (g) + s € Eo (G).
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Construct the corresponding representation (U\V” HW’) of G ;
U\V’ is the trivial extension of U to G, therefore irreducible. It
is to be noted that y' is extreme in Eq (G). Now extend ¢ to G
by ¢' (g, s) = ¢ (g). Clearly, W' dominates ¢' in E, (G) and
since ' is extreme there exists A > 0 such that Ay = ¢'; i.e.,
w=0.//

Lemma 3.10

B' (U) is precisely the set of bounded 1-cocycles of U. The
proof follows directly from 3.7 of(10).

Lemma 3.11

Let ¢ be a cocycle for the representation U of G and let

v x) = | | c (x) | |2/2 € Eg (G). Then for each p € MO,
(G) such that -yl (e) = 1 we have -yl is a diagonal
coefficient of U. ’

Proof

The proof follows immediately because,
-y (@) =-[Tw (xgy) dp 0 di ()

=] (U c®,c@)dp (x)du (y)
=(U (&) cp, c). //

Proof of i)

LetUe GF,ceZ (Uandy x)=||cx |1%. By
Lemma 3.9, ¥ generates an extreme ray in Eg (G). In fact v
is either local or bounded. If v is boudned then by Lemma
3.10 the result follows. If it is local, we choose p € MO; (G)

such that -y (e) = 1. By Theorem 3.5 we have -yl € F. In
the same time, by Lemma 3.11, (see also Theorem 4.2 in (11,

there is a diagonal coefficient p of U such that -yl =
(p+ 5)/2. Clearly, f) is also a diagonal coefficient of Ue
G-F. Now p and E belong to the set of extreme points of
P1 (G), say ext P1 (G). So p, E € F', the complementary face

of F. This makes a contradiction with -yt € F and hence H'
U)=0.
Before starting on part ii) we have to prove the following:

Lemma 3.12
Suppose that U is a representation of G on a separable
Hilbert space and it has a direct integral decomposition U (.)

= Js U (s,.) dp (s) over some probability space (S, p (s). For
H' (U) = 0 it is necessarily that there exist open sets V1 and

V2 in G, V1 ~ V72 = ¢ such that Vi contains the trivial
representation and V7 contains almost every U (s.,).

Proof

Let ¢ € Z' (U). By Theorem 13.2(13) ¢ has a

decomposition in the form (¢ () = fe(s,)ydu (s) where

seSandc(s,.) € Z' (Us,). S

By part i), for almost every s € S, there exists Ag > 0 and a
unit vector Eg in the Hilbert space of U (s,.) such that ¢ (s, x)
=As (U (s, x) Es - Es. Let p (s, X) &, ). Then

v (0 =Js22Z (1-p (s, %) dp (5)

= Js A2 du (s)-Is AZgp (s, x) dp (5).

Now, H1 (U) =0 if w (x) is bounded and this is true if Ag

e L2 (S, u). In fact, there exists an open set O in P1 (G)

containing the identity and excluding almost every p (s,.).
Let g be the non-negative function in Cc (G) of Lemma 3.1

which corresponds to O and let & > 0 be such that for p € P
(G)- 0, (p, g) <1-8. By Fubini's Theorem we have

o>y (x)g(®) dx=JsAZs (1-p (s, %) g (x) dxdp () 2
8 Js A2 dp (s), sothat Ag € L) (S, w). //

Proof of ii)

| Let the assumptions of Lemma 3.12 be given and suppose
that there exist disjoint open sets V1 and V7 in Prim (G) such
thatker 1 € V1 and ker U € V). Forae C* (G), |l U (a) i
= £55.§ sup | |U (s, a) | |, so that if a € ker U, then a € ker
U (s,.) for almost every s € S. Let I=ker Uand I (s) = ker
U (s,.). Excluding a p-null set, then I= {I(s) | s e S).
Since factor representations are homogeneous, then for each
measurable subset E of positive p-measure there exists Eq
E such that 1=~ {I(s) | s e Eq}. Evidently, the map s —
I (s) is a measurable function from S into Prim (G), hence the
setE = {s | I(s) ¢ V1) is measurable. Now, suppose that L,
E>0. ThenI= ~ {I(s) l s € EgyC {I1(s) | s € Eg}C
V¢1. Since V1 is open we arrive to a contradiction, and the
proof can be completed by applying Lemma 3.12. /

REFERENCES

[1]. Akemann, C.A., 1968. Sequential convergence in the
dual of a W* -algebra, Common. Math. Phys., 7:
222-224.

[2]. Alfsen, E.M., 1971. Compact convex sets and boundary
integrals, New York, Springer-Verlag.

[3]. Berezanskii, Ju. M., 1968. Expansion in eigenfunctions
of selfadjoint operators, Transl. Math. Monographs, Vol.
17, Amer. Math. Soc., Providence, R.I.

[4]. Berg, C., J.P.R. Christensen, and P. Ressel, 1984.
Harmonic analysis on semi-groups, New York,
Springer-Verlag.

{5]. Berg, C. and G. Forst, 1975. Potential theory on locally
compact abelian groups, New York, Springer-Verlag.

[6]. Combes, F., 1968. Poids sur une C* -algebra, J. Math.
Pures. Appl., 47: 57-100.




A.S. OKB EL BAB and M. S. EL-SHAZLI

[7]. Dixmier, J.,, 1977. C* -algebras, New York,
North-Holland.

(8]. Falkowski, B.J., 1977. First order cocycles for SL (2, ¢),
J. Indian Math. Soc., 41: 245-254,

[9]. Guichardet, A., 1975. 1-cohomologie des groups de lie

resolubles de type (R) ef propertie (P), C.R. Acad. Sci.
280: 101-103.

{10]. Johnson, B.E., 1973. Cohomology in Banach Algebras,
Mem. Amer. Math. Soc. no. 127.

[11]. Okb El-Bab, A.S. 1993. Conditionally exponential
convex functions on locally compact groups, Qatar
Univ. Sci. J., 13(1): 3 - 6. :

[12]. Okb El-Bab, A.S. and El-Shazli, M.S., 1987.
Characterization of convolution semi-groups, Proc.
Pakistan Acad. Sci., 24 (3): 249-259.

[13]. Parthasarathy, K.R. and Schmidt, K.R., 1972. Positive
definite kernels, continuous tensor products and central
limit theorems of probability theory, Lecture Notes in
Math., no. 272, Berlin, Springer-Verlag.






