DECOMPOSITION OF THE SET OF CONDITIONALLY EXPONENTIAL CONVEX FUNCTIONS

By

A. S. OKB EL BAB* and M. S. EL-SHAZLI**

*Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
**Mathematics Department, Industrial Institute, El-Madina, Saudi Arabia

تكوينات مجموعة الدوال الأسية المحدبة المشروطة أحمد عقب الباب و م. س. الشاذلي

في هذا البحث نستخدم نظريات الجبر * لايجاد علاقة بين النقط المتطرفة المحلية $^{\hat{G}}$ لمجموعة الدوال الأسية المحدبة المشروطة والتوبولوجي المعرف على الفراغ الطيفي $^{\hat{G}}$

Key Words: Conditionally Exponential Convex Functions, C* - algebra.

ABSTRACT

The theory of C* -algebra is used to develop a connection between the local extreme points and the topology of the spectrum space \hat{G} .

INTRODUCTION

Berg, Christensen and Ressel(4) and independently Okb-El-Bab and El-Shazli(12) studied conditionally exponential convex functions on semigroups. For G compactly generated, a compact base for E_0 (G), the set of conditionally exponential convex functions defined on a locally compact group G, was constructed in(11). Also, the auther in(11) obtained the extreme points of that base.

In this article we use the theory of C* -algebra to develop a connection between the local extreme points and the topology of the spectrum space G. The main advantage of C* -algebraic approach, besides its generality, is that topological considerations come to the foreforent.

DEFINITIONS AND NOTATION

Let G be a separable locally compact group equipped with left Haar measure dx and modular function Δ , where the identity element is denoted by e, and let G be the set of irreducible representations of G. If G is abelian, G is its dual. By C_c (G) (C_c^0 (G) we denote the set of compactly supported continuous functions on G (with total left Haar integral zero(5).

Let C* (G) be the inveloping C* -algebra of L¹ (G) equipped with the involution # defined by $f^{\#}(x) = \Delta (x^{-1}) f^{+}_{(x)}$ where $f^{+}(x) = f(x^{-1})$. The dual of C* (G) is B (G) and its double dual is W* (G). For the universal representation ω we write ω (μ) to indicate that belongs to W* (G)(7).

Now let S be a separable compact convex set. A subset F

of S is called a face if each line segment in S whose interior intersects F is contained in F. The complementary set F' of F is the union of all faces of S disjoint from F. If F is a closed face and F' is also a face then F is called a closed split face. In this case, S is the direct convex sum of F and F'; i.e., every $x \in S$ can be written uniquely in the form $x = \lambda y + (1 - \lambda) z$, $0 \le \lambda \le 1$, $y \in F$, $z \in F'(2)$.

If χ is a subset of the set ext S, of extreme points of S, its facial closure is $F \cap \text{ext S}$, where F is the smallest closed split face of S containing χ . The topology defined in this way is called the facial topology. This topology is coaser than the weak *-topology (2).

In the following we write P (G) for the set of all exponentially convex functions defined on G; i.e., functions satisfying

$$\sum_{i, j=1}^{n} \psi(g_i g_j) c_i c_j \ge 0,$$

where $g_1, ..., g_n \in G$ and $c_1, ..., c_n \in R$. The set of elements from P (G) with norm equals 1 is P_1 (G). Clearly P_1 (G) is a convex set(3). Also we write E_0 (G) for the set of all conditionally exponential convex functions defined on G and vanishing at the group identity; i.e., functions satisfying

$$\sum_{i, j=1}^{n} [\psi(g_i) + \psi_i(g_j) - \psi(g_i g_j)] c_i c_j \ge 0,$$

where $g_1, ..., g_n \in G$ and $c_1, ..., c_n \in R(4,12)$.

Elements of E_0 (G) can be characterized geometrically as semi-tangents to P_1 (G) at the identity, and if ψ , - $\psi \in E_0$ (G) then ψ becomes a tangent vector to P_1 (G) at the identity.

By a Levy weight for $\psi \in E_0$ (G) we mean the linear functional (also deenoted by ψ) defined by

$$\psi$$
 (a) = (1, ∂_{ψ} a), a \in domain (∂_{ψ}),

(∂ is a linear functional from C* (G) to C* (G) which is densely defined and ψ | (ker 1)+ \geq 0. If $M_{\psi}=N^{\#}_{\psi}N_{\psi}$ and $N_{\psi}=\{a\in\ker 1\ |\ \psi\ (a^{\#}\ a)<\infty\}$, then the weight is called local if $\sup\{\rho_{\alpha}\ (a;\ \psi)\ |\ \alpha>0\}=0$ for all $a\in(\ker 1)^{+}_{1}$, where

$$\rho_{\alpha}(a; \psi) = \inf \{ \psi(s) + t\alpha \mid a \le s + tz_1; t \ge 0, s \in M^+_{\psi} \},$$

 z_1 is the central support of the weak closure of ker 1 in W^* (G) and (ker 1)₁ is the unit ball of ker 1(6).

Given a continuous unitary representation U of G on a Hilbert space H, a continuous map $c:G \to H$ such that c(e) = 0 and c(xy) = c(x) + U(x) c(y) is called a 1-cocycle for U. The additive group of such cocycles is denoted by Z'(U). The subgroup B'(U) of 1-cobounaries is that set of cocycles of the form $c(x) = U(x) \xi - \xi, \xi \in H$. The quotient H'(U) = z'(U)/B'(U) is called the first cohomology group of U(8).

Finally, for ψ , $\phi \in E_0$ (G) we say that ψ dominates ψ if $\psi - \phi \in E_0$ (G). If ϕ and ψ dominate each other then they are equivalent, and they are weakly equivalent if one is equivalent to a positive multiple of the other(6).

A DECOMPOSITION THEOREM FOR E_{0} (G)

In this section we study the connection between the topology on G and the structure of E_0 (G). Let C_e^* (G) be the smallest C^* -algebra containg C^* (G) and has an identity and let S be its state space which is compact in the relative weak *-topology.

If C^* (G) has an identity then S coincides with P_1 (G). Otherwise P_1 (G) is a split face in S, and S is the direct convex sum of P_1 (G) and the state f_0 , defined by $f_0 \mid C^*$ (G) = 0.

Let $\{O_n \mid n \ge 1\}$ be a collection of relatively weak * -open subsets of ext S such that $o_n \subseteq \overline{o}_n \cap \text{ext S} \subseteq O_{n-1}$ and $\cap_n O_n = \{1\}$. If Up is the irreducible representation of G obtained from $p \in \overline{o}_n \cap \text{ext S}$ then we define the two sided ideal In $= \cap \{\text{ker U}_p\} \ \forall n$. The closure of O_n in the facial topology on ext S is $F_n \cap \text{ext S} \ F_n = I^{\perp}_n$ is the closed split face of S annihilated by I_n . Finally, let $q_n \in W^*$ (G) and z_1 be the central supports of I_n and ker 1, respectively. Since $O_{n-1} \supset O_n \supset \{1\}$, we have $q_{n-1} \le q_n \le z_1$.

In the following we prove that the Levy weights of

elements of E_O (G) are bounded on I_n.

Lemma 3.1

If V is a weak-* open neighborhood of the constant function 1 is S, then there exist $\delta > 0$ and $g \in C_{\mathbb{C}}(G)$ such that i) $g \ge 0$, ii) $0 \le \omega(g) \le 1$, iii) $(1, \omega(g)) = \int g(x) \, dx = 1$, and iv) for each $f \in S\setminus V$ we have $(f, \omega(g) < 1 - \delta)$.

Proof

Let $L = \{g \in C_C(G) \mid g \ge 0, \int g(x) dx = 1\}$ and $D(g) = \{f \in S \mid g \in L \text{ and } (f, \omega(g\# g) = 1\} \text{ where } * \text{ denotes the usual convolution. For } f \in D(g) \text{ we can write } f = \lambda p + (1-\lambda) f_0 \text{ for some } p \in P_1(G) \text{ and } 0 \le \lambda \le 1. \text{ Simple calculations show that } \lambda = 1 \text{ and } f = p; i.e., f \in P_1(G). Now, for } f \in \cap \{D(g) \mid g \in L\} \text{ we have } f = 0$

$$\iint (1-f(xy)) g(x) g(y) dxdy = 0, \text{ hence}$$

(1-f (xy)) g (x) g (y) dxdy = 0 on G \times G. Choosing the support of g to contain any compact set in G we get f = 1.

If V is a weak-* open neighborhood of 1 in S, then $S\V$ is compact and

$$\begin{split} \varphi &= (S \backslash V) \, \cap \, \, \left(\cap \, \left\{ D \left(g \right) \, \middle| \, g \in L \right\} \right) \\ &= (S \backslash V \, \cap \, \, \left(\cap \, \, \, \cap \, \left\{ f \in S \, \middle| \, \left(f, \omega \left(g^{\# *} g \right) \right) \geq 1 \text{--} \in \right\} \right) \, . \\ &\quad g \in L \ \, \in \, > 0 \end{split}$$

By the finite intersection property, there exist $\in 1, ..., \in n > 0$ and $g_1, ..., g_m \in L$ such that

$$\phi = \bigcap_{k=1}^{n} \bigcap_{\ell=1}^{m} \{f \in S \mid (f, \omega (g_{\ell}^{\#} * g_{\ell})) \ge 1 - \epsilon_{k} \} \cap (S \setminus V).$$

Now, conditions i) -iv) are easily satisfied for $\delta = \min (\in \mathbb{R})$

/m) and
$$g = \frac{1}{m} \sum_{\ell=0}^{m} g^{\#}_{\ell} * g_{\ell}$$
 and the lemma follows.

Lemma 3.2

For each $n \ge 1$ there exist $g_n \in C_c$ (G) with $g_n \ge 0$, $g_{n(x)} dx = 1$ and $B_n \in W^*$ (G) such that $q_n = B_n \omega$ ($\delta_e - g_n$) where δ_e is the point mass at e.

Proof

Suppose that V_n is a neighborhood of the identity is S containted in the face F_n annihilated by I_n . For this neighborhood we construct $g_n \in C_c$ (G) and $\delta_n > 0$ as in Lemma 3.1. Then

$$| | q_n \cdot \omega(g_n) | | = \sup \{ (p, q_n \omega(g_n)) | p \in S \}$$

$$= \sup \{ (p, \omega(g_n)) | p \in S \setminus F_n \}$$

$$\leq \sup \{(p, \omega(g_n)) \mid p \in S \setminus V_n\} \leq 1 - \delta_n.$$

Thus the geometric series $\sum_{n=0}^{\infty} q_n (\omega(g_n))^k$ converges to an k=0

 $B_n \in W^*(G)$ of norm at $most \Sigma (1-\delta_n)k = \delta^{-1}_n$. clearly, $B_n \omega (\delta_e - g_n) = q_n$. // k = 0

Lemma 3.3.

If ψ is the Levy weight of an element of E_0 (G) then there exists $p_n \in P$ (G) such that $\psi \mid I_n = p_n \mid I_n$ for all values of n.

Proof

Let
$$a \in I_n \subset \ker 1$$
. Then
$$0 \le \psi (a^\# a) = \psi (q_n a^\# a q_n)$$
$$= \psi (\omega (\delta_e - g_n) B_n a^\# a B_n \omega (\delta_e - g_n))$$
$$= \psi (\omega (\mu_n) B_n a^\# a B_n \omega (\mu_n)),$$

where μ_n is the measure defined by $d\mu_n = \delta_e - g_n \, dx$. It is clear that $\mu \in M^o_c$ (G), the set of compactly supported Borel measure on G of total mass zero. Since

$$\sum_{k=0}^{\infty} a(\omega(g_n)^k = \sum_{k=0}^{\infty} a q_n(\omega(g_n))^k \to a B_n$$

we have a $B_n \in I_n \subset C^*(G)$ Applying Lemma 2.1 in (11) we obtain

$$\psi \quad (a\# \ a) = (-\psi^{\mu}_{n}, B_{n} \ a\# \ a \ B_{n})$$

$$\leq -\psi^{\mu}_{n(e)} \quad | \ | \ B_{n} \ | \ |^{2} \quad | \ |_{a} \quad |^{2} \leq -\delta^{-2}_{n} \psi^{\mu}_{n(e)} \quad | \ |_{a} \quad |^{2}$$

This shows that $\psi \mid I_n$ is a bounded weight. On the other hand, we define p_n by the product p_n (.) = $-\psi^{\mu_n}$ (B_n . B_n). Then $p_n \in P$ (G) and $\psi \mid I_n = p_n \mid I_n$. //

Corollary 3.4

 ψ dominates p_n (e) - p_n in E_0 (G).

Theorem 3.5

Suppose that $p_n \psi \in E_O(G)$ has a local Levy weight and F is the closed split face of S given by $F = \bigcap_n F_n$. Then for each $\mu \in M^O_C(G)$ such that $-\psi^{\mu}(e) \neq 0$ we have $-\psi^{\mu}-\psi^{\mu}(e) \in F$.

Proof

If the Levy weight for ψ is local then, by definition, ψ does not dominate any semitangent of the form p (e) -p, $p\in P$ (G). This implies that $\psi \, \big| \, I_n = 0$ for all $n \geq 1$ and hence $\psi^{\mu} \, \big| \, I_n = 0$ for each $\mu \in M^O_C$ (G). This means that - ψ^{μ} is annihilated by the closed two-sided ideal $\bigcap \overline{I_n = F^{\perp}}.$

Theorem 3.6

Each $\psi \in E_0$ (G) can be written uniquely in the form $\psi = \psi_1 + \psi_2, \psi_1, \psi_2 \in E_0$ (G), where

- i) for each $\mu \in M^o{}_c$ (G) such that $-\psi \mu_1$ (e) $\neq 0$, $-\psi \mu_1/-\psi \mu_1$ (e) $\in F$
- ii) $\psi_2 = \lim_n (p_n (e) p_n)$, where $p_n \in P (G)$ and $p_n \mid I_n = \psi \mu \mid I_n$.

Proof

We note that if $\ \psi_2=\lim_n\ (p_n\ (e)\ -p_n)$, then from Corollary 3.4, ψ_2 , ψ_1 , = ψ - ψ_2 belong to E $_0$ (G). Moreover, ψ_1 vanishes on each $\ I_n$ and the proof of Theorem 3.5 applies. //

Now, let U be a factor representation of G. By Proposition 5.2.7 of $^{(7)}$ and Corollary 2 of $^{(1)}$ ker U is a primitive ideal of C* (G).

Definition 3.7(9)

A factor representation U of G is said to be separated from the trivial representation if there exist disjoint open sets V_1 and V_2 in Prim (G), the primitive ideal space of C^* (G), such that $\text{ker } 1 \in V_1$ and $\text{ker } U \in V_2$.

A group G has a property (P) if each factor representation of G on a separable Hilbert space which is separated from the trivial representation has a trivial first cohomology group H¹ (U).

In fact, every locally compact group has this property. As an application of Theorem 3.6 we have:

Theorem 3.8

Let G be a separable locally compact group.

i) If F = ∩{ o | o is an open neighborhood of the trivial representation in G} and if U ∈ G-F, then H¹ (U) = 0
 ii) G has property (P).

Proof

i) We need the following Lemma for proving this part.

Lemma 3.9

If U is an irreducible representation of G and if $c \in V'(U)$ then $\psi(x) = ||c(x)||^{2/2}$ generates an extreme ray in

 E_0 (G); i.e., each of its dominated elements is either a tangent vector or weakly equivalent to ψ .

Proof

Let $\varphi \in E_0$ (G) be dominated by $\,\psi$ and let $\widetilde{G} = GX_mR$ be the multiplier extension of G by R w.r.t. the trivial action of G on R, defined by the multiplier

$$m(g, h) = -(c(h), c(y))$$
 and $\psi'(g, s) = \psi(g) + s \in E_0(G)$.

Construct the corresponding representation (U_{ψ}, H_{ψ}) of \widetilde{G} ; U_{ψ} , is the trivial extension of U to G, therefore irreducible. It is to be noted that ψ' is extreme in E_{O} (G). Now extend ϕ to G by ϕ' (g, s) = ϕ (g). Clearly, ψ' dominates ϕ' in E_{O} (G) and since ψ' is extreme there exists $\lambda > 0$ such that $\lambda \psi = \phi'$; i.e., $\lambda \psi = \phi$. //

Lemma 3.10

B' (U) is precisely the set of bounded 1-cocycles of U. The proof follows directly from 3.7 of (10).

Lemma 3.11

Let c be a cocycle for the representation U of G and let $\psi(x) = | | c(x) | |^2/_2 \in E_0$ (G). Then for each $\mu \in M^0_C$ (G) such that $-\psi\mu$ (e) = 1 we have $-\psi\mu$ is a diagonal coefficient of U.

Proof

The proof follows immediately because,

- $-\psi \mu (g) = -\iint \psi (xgy) d\mu (x) d\mu (y)$
 - $=-\int \int (U(g)c(x),c(y)) d\mu(x) d\mu(y)$
 - $= (U(g)c_{II}, c_{II}). //$

Proof of i)

Let $U \in G$ -F, $c \in Z'$ (U) and ψ (x) = $| \cdot c \rangle$ (x) $| \cdot |^2/2$. By Lemma 3.9, ψ generates an extreme ray in E_0 (G). In fact ψ is either local or bounded. If ψ is bounded then by Lemma 3.10 the result follows. If it is local, we choose $\mu \in M^0_c$ (G) such that $-\psi\mu$ (e) = 1. By Theorem 3.5 we have $-\psi\mu \in F$. In the same time, by Lemma 3.11, (see also Theorem 4.2 in (11), there is a diagonal coefficient p of U such that $-\psi\mu = (p+p)/2$. Clearly, p is also a diagonal coefficient of $U \in G$ -F. Now p and p belong to the set of extreme points of P_1 (G), say ext P_1 (G). So p, $p \in F'$, the complementary face of F. This makes a contradiction with $-\psi\mu \in F$ and hence H' (U) = 0.

Before starting on part ii) we have to prove the following:

Lemma 3.12

Suppose that U is a representation of G on a separable Hilbert space and it has a direct integral decomposition U (.) = $\int_S U(s,.) d\mu$ (s) over some probability space (S, μ (s). For H' (U) = 0 it is necessarily that there exist open sets V_1 and V_2 in G, $V_1 \cap V_2 = \phi$ such that V_1 contains the trivial representation and V_2 contains almost every U (s.,).

Proof

Let $c \in Z'$ (U). By Theorem 13.2⁽¹³⁾ c has a

decomposition in the form $(c(.) = \int c(s,.) d\mu(s)$ where $s \in S$ and $c(s,.) \in Z'(U(s,.))$.

By part i), for almost every $s \in S$, there exists $\lambda_S > 0$ and a unit vector ξ_S in the Hilbert space of U (s,.) such that c (s, x) = λ_S (Ú (s, x) ξ_S - ξ_S . Let p (s, x) ξ_S , ξ_S). Then

$$\psi(x) = \int_{S} \lambda^{2} (1-p(s, x)) d\mu(s)$$

$$= \int_{S} \lambda^{2} d\mu (s) - \int_{S} \lambda^{2} p(s, x) d\mu (s).$$

Now, H_1 (U) = 0 if ψ (x) is bounded and this is true if $\lambda_S \in L^2$ (S, u). In fact, there exists an open set O in P_1 (G) containing the identity and excluding almost every p (s,.). Let g be the non-negative function in Cc (G) of Lemma 3.1 which corresponds to O and let $\delta > 0$ be such that for $p \in P_1$ (G) - O, $(p, g) < 1 - \delta$. By Fubini's Theorem we have

 $\infty > \int \psi(x) g(x) dx = \int_S \lambda^2 S(1-p(s, x)) g(x) dx d\mu(s) \ge \delta \int_S \lambda^2 S(x) d\mu(s), \text{ so that } \lambda_S \in L_2(S, \mu). //$

Proof of ii)

Let the assumptions of Lemma 3.12 be given and suppose that there exist disjoint open sets V_1 and V_2 in Prim (G) such that ker $I \in V_1$ and ker $U \in V_2$. For a e $C^*(G)$, | | U(a) | | = ess.S sup | | U(s, a) | |, so that if $a \in \ker U$, then $a \in \ker U(s, .)$ for almost every $s \in S$. Let $I = \ker U$ and $I(s) = \ker U(s, .)$. Excluding a μ -null set, then $I = \bigcap \{I(s) \mid s \in S\}$. Since factor representations are homogeneous, then for each measurable subset E of positive μ -measure there exists E_0 E such that $I = \bigcap \{I(s) \mid s \in E_0\}$. Evidently, the map $s \to I(s)$ is a measurable function from S into Prim (G), hence the set $E = \{s \mid I(s) \notin V_1\}$ is measurable. Now, suppose that $I \to I(s)$ is $I(s) \in I(s)$ and $I(s) \to I(s)$ is $I(s) \in I(s)$ and $I(s) \to I(s)$ is open we arrive to a contradiction, and the proof can be completed by applying Lemma 3.12. I(s)

REFERENCES

- [1]. Akemann, C.A., 1968. Sequential convergence in the dual of a W* -algebra, Common. Math. Phys., 7: 222-224.
- [2]. Alfsen, E.M., 1971. Compact convex sets and boundary integrals, New York, Springer-Verlag.
- [3]. Berezanskii, Ju. M., 1968. Expansion in eigenfunctions of selfadjoint operators, Transl. Math. Monographs, Vol. 17, Amer. Math. Soc., Providence, R.I.
- [4]. Berg, C., J.P.R. Christensen, and P. Ressel, 1984. Harmonic analysis on semi-groups, New York, Springer-Verlag.
- [5]. Berg, C. and G. Forst, 1975. Potential theory on locally compact abelian groups, New York, Springer-Verlag.
- [6]. Combes, F., 1968. Poids sur une C* -algebra, J. Math. Pures. Appl., 47: 57-100.

- [7]. **Dixmier, J., 1977.** C* -algebras, New York, North-Holland.
- [8]. Falkowski, B.J., 1977. First order cocycles for SL (2, c), J. Indian Math. Soc., 41: 245-254.
- [9]. Guichardet, A., 1975. 1-cohomologie des groups de lie resolubles de type (R) ef propertie (P), C.R. Acad. Sci. 280: 101-103.
- [10]. Johnson, B.E., 1973. Cohomology in Banach Algebras, Mem. Amer. Math. Soc. no. 127.
- [11]. Okb El-Bab, A.S. 1993. Conditionally exponential convex functions on locally compact groups, Qatar Univ. Sci. J., 13(1): 3 6.
- [12]. Okb El-Bab, A.S. and El-Shazli, M.S., 1987. Characterization of convolution semi-groups, Proc. Pakistan Acad. Sci., 24 (3): 249-259.
- [13]. Parthasarathy, K.R. and Schmidt, K.R., 1972. Positive definite kernels, continuous tensor products and central limit theorems of probability theory, Lecture Notes in Math., no. 272, Berlin, Springer-Verlag.