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ABSTRACT 

There are two widely used random distributions on binary trees, namely the binary search tree distribution and the uniform 

distribution. By analyzing the performance of algorithms that manipulate binary trees generated at random, it is possible to 

assess the average case performance of the algorithm. This average case performance is often a more useful reflection of the 

algorithm's suitability than the worst-case performance. An algorithm may have a worst-case run time that is of exponential 

time complexity, but an average-case run time that is of polynomial time complexity. In such cases, one wishes to assess the 

performance of an algorithm on a 'typical' range of tree structures and thus relate properties of randomly generated trees, such 

as depth, to aspects affecting the algorithm's run-time. The purpose of this paper is to design and implement a random binary 

trees generation algorithm that considers the average case performance. The algorithm is differ from both the uniform distrib­

ution and the binary search tree distribution. Analysis of the behaviour of the algorithm is given. 
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A Random Binary Trees Generation Method 

1. INTRODUCTION 

Two commonly used random distributions of binary trees 

are the uniform distribution, escrimed in [1, 4, 6, 7], and the 

conceptually simpler binary search tree distribution as 

described in [2, 3, 5]. When we used the uniform distribution 

to generate binary trees, every 2n-1 node tree as equally like­

ly to be generated, whereas the binary searc tree distribution 

is a biased distribution. The uniform distribution is biased 

towards producing trees that are extremely unbalanced in 

terms of the number of leaves in the left and right sub-trees. 

For the uniform distribution, the probability that a randomly 

generated tree Tn = L oR, where o denotes a single node of a 

tree; L o R, means that a tree with root nodeo , left sub-tree 

L, and right sub-tree R, is as follows. 

ITII·IT • .;! 
Probability [iLl = i] = --

ITnl 

With referenc to [4], it can be shown that 

Tn =-~-(~n) z 4n 
4n- 2 n! 

Probability [ILl= i} z I Til~ 0 as i ~= 
4' 

For the binary search tree distribution, the probability that 

a randomly generated ~ee having a particular left sub-tree 

size is constant with respect to the number of leaves in the 

tree. 

The method is this paper is differ from both the uniform 

distribution and the binary search tree distribution is signifi­

cant ways. The algorithm of thispaper is nonuniform; i.e. 

node ever 2n-1 is equally like to be generated, unlike the algo­

rithm of references [1, 4, 6, 7]. Also the algorithm behaves 

differently from the binary search tree distribution. The bina­

ry search tree distribution is generated as the output of a 

recursive random algorithm, whereas thisalgorithm is itera­

tive. We will prove that the method of this paper has the same 

distribution as the binary search tree distribution. 

The aim of the method of this paper is to analyze these 

differences byconsidering the average case behavior of the 
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following standard measures on trees: 

• Depth : the depth of a tree is the length of the longest 

path from a leaf to the root node. 

• Width : the k th level of a binary tree is the set of nodes 

at depth k from the root node. The width of a binary tree 

is the maximum number of nodes on a single level. The 

widthis at lest 2 and at most n/2 for an n node binary tree. 

• Number of twigs: a twig is a node in the tree, both of 

whose predecessor nodes are leaves. 

• Sub-tree sizes : the probability that a randomly gen­

erated tree has a left sub-tree size of 2k-1, thus the distri­

bution of sub-tree sizes for each value of k between I and 

n-1. This probability distribution of sub-tree sizes has 

been widely studied using the uniform distribution and 

the binary search tree distribution. 

2. MODULARIZATION 

An algorithm for random binary tree generation is sup­

plied. Let range= { 1,2,3, ... , n}. The initial steps of the algo­

rithm are: 

while next_node < 2n 

{ 

} 

select 2 random nodes from range 

remove these two nodes from range 

add next_node to range 

update the set of edges. E 

next_node: = next_node + 1 

This is re-written to deal with the problem of selecting 

the same node twice, as 

while next_node < 2n 

{ 

} 

select a node randomly from range 

remove this node from range 

select another node from range 

remove this node from range by adding next_node 

update the set of edges. E 

next_node: = next-node + 1 
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This is then expanded as follows: 

while next_node < 2n 

1. (a) select a position in range to take a node 

from 

(b) assign the value at this position to u 

2. Move the value stored at the position of the 

number of choices into this position 

3. (a) select a position in range to take a node 

from using n-1 choices 

(b) Assign th value stored at this position to v 

4. Replace the value at this position with 

next_node 

5. Update the set of edges, E 

6. next_node : = node + 1 

The final form of the random binary tree generation 

algorithm is as follows: 

Input: n EN. 

Output: Random n leaf, 2n-1 node binary tree T(V,E). 

Method: 

Range: = {1 2 3, .. . , n}; 

E: = 0; 

V =range; 

next-node: = n + 1; 

while next_node < 2n 

{ 

} 

(u, v): = Random pair of distinct nodes from 

Fringe; 

range:= range- {u,v}; 

range: =range u {next_node}; 

V = V u {next_node}; 

E: =Eu {{U,next_node}, {v,next_node}}; 

next_node: = next_node+ 1; 

return T(V,E); 

The algorithm provides enough information for a 
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top-down program design and implementation to be per­

formed. A procedure called random_tree has been written 

toimplement this algorithm. 

3. DATA STRUCTURES 

3.1 Range Structure 

The data structure range represents a list of integers, 

which take the values from 1,2, ... , n. This structure is repre­

sented by a one-dimensional array of integers. By considering 

the operations to be performed on this structure, it is noticed 

that the algorithm requires the repeated selection of two ran­

dom elements from this set of numbers to be 'connected' to 

the value next_node. Once these two elements had been 

selected, they were never to be chosen again in order that a 

node in the three and exactly zeroor two successors. This fact 

lead one to choose a linked list structure rather than an array, 

as elements that are selected could be deleted from the list and 

new ones added. The drawback with using a linked list to rep­

resent this structure would be that it would make the execu­

tion of the program slightly more difficult to follow. It was 

therefore decided to use the one-dimensional array to repre­

sent range, and in order to overcome the possibility of rese­

lection of nodes, the order in which the nodes in the list were 

stored could be manipulated. 

For example, supposing we start with an input of n=5 to 

produce a 5 leaf tree; at the start ofthe program's execution, 

the structure range would look something like this: 

Once the first element had been selected, and assigned to 

the variable u, this element is not to be selected again. The 

element is replaced by the element at the position of the num­

ber of choices and the next selectio is made from the n-1 ele­

ments in the list. Ifthe element number three in the array was 

chosen first, then this wouldbe replaced by the element num­

ber 5, and selection would then continue using only the first 

four numbers. In the example above, the array would now he 

of the form: 

and the next selection would be taken from the elements num­

bered 1, 2, 5 and 4. Similarly, when the second selection has 

been made, the next_node element, which is then added to 

this list, is placed in the position where the last selection was 
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taken from. For example, selecting element number 2 would 

cause element number 6 to replace it giving: 

This would then continue throughout the execution of the 

loop, each time making a choice from one fewer elements 

until the constraint oncontinuingthe loop no longer holds. 

3.2 The Edge Set Structure 

The data structure E in the algorithm represents the set of 

internal nodes of the tree and holds information to discern 

which of these nodes are connected to which other nodes in 

the tree, i.e. a set of edges. Each element in the set therefore, 

has associated with two integers. The edge set is represented 

as a two dimensional array. The advantage set is represented 

as a two dimensional array. The advantage of choosing this 

data structure is that one of the indices of the array could be 

indexed by the values n + l, ... , 2n-l representing the node num­

bers for the non-leaf nodes of the trees of the tree. Also using 

this data structure makes it easier to calculate the number of 

twigs in the tree. The twigs in the tree are the nodes in the 

range n+l, ... , 2n-l, which are connnected to tne nodes num­

bered less than n+l. 

For example, using an input of n==5, the data structure E 

could look something like: 

6 7 8 9 

1 [:!JTITI!] 
2~ 

nodes numbered 6 and 8 are twigs as they are connected to 

nodes 1 and 5 and 3 and 4 respectively, all of which are leaf 

nodes as their node numbers are less than or equal to n. 

3.3 The Tree Structure 

The structure T represents the tree itself. The program 

requires a data structure that can be used recursively to form 

the tree, due to the recursive nature of this definition of a 

binarytree. The choice of a linked list in this situation to rep­

resent the tree is fairly obvious. Each element in the list 

wouldcontain an integer field to represent the node number 

and it would alsocontain two pointers to two sub-trees which 

are themselves binary trees. The pointers would contain 

NULL values if the node was a leaf of the tree as it would 

have no successors. In the previous example, the tree structure 
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would look as follows: 

Using this implementation wouldmake the calculations of 

width; dept etc. easier as the tree could be parsed recursively 

to calculate the relevant data. 

4. CALCULATING MEASURES 

Once the code had been implemented to generate ran­

domly, a binary tree using the supplied algorithm, it was then 

necessary to include procedures/functions that would investi­

gate this tree structure to calculate the standard measures 

described earlier, i.e. width, depth etc. 

4.1 Twigs 

In order to calculate the number of twigs in the tree, the 

tree structure itself is not necessary. The data structure, E, is 

chosen to make this task less complicated. The structure is 

indexed in one-dimension by the node numbers of all the 

internal nodes of the tree. If both of the values stored at one 

of these indices is less than or equal to the number of leaves­

input, then the index value must be the node number of a twig. 

The function num_twing takes the set of edges, E as its 

parameter and returns the number of twigs as a result. The 

function searches the two dimensional array through index 1 

and the number of twigs is incremented if, for one of these 

indices, both entries have a number less than the first index 

position of the array i.e. less than n +I. 

4.2 Width and Depth 

In order to calculate the width and depth of the tree, it 

was decided that a list of the widths at each ofthe levels was 

to be constructed. This makes it not only possible to calculate . 
the greatest width of the tree, but also as a consequence, gives 

the depth of the tree as well. The procedure calledjill_set per­

forms this task. It takes three parameters: a one-dimensional 

array to hold the list of widths at each level, the tree structure, 

T, and the current level. 
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The initial call is made with the empty list, T, and the 

level number 1. Each time a call ismade to this procedure, the 

width at the current level is incremented by 1. If teh left sub­

tree pointer does not contain a NULL value, then the proce­

dure calls itself passing the list of widths, T and the next level 

as parameters. As each node is visited only once, on comple­

tion of the procedure, the list contains the width at eachlevel 

of the tree. A simple function to retrieve the maximum value 

in this list, grt_maxim, reveals the witdh of the tree. 

Once this list of widths is created, it is easy to use this to 

calculate maximum depth. The function called get_depth cal­

culates the value for the depth of the tree bycounting the num­

ber of entries in the list, which contain a non-zero value. 

4.3 Sub-tree Sizes 

A function, get_size, was also added to calculate the size, 

in nodes, of any given binary tree. The function takes a tree 

structure as a parameter and recursively traverses the tree 

adding one to its size when encountering a non-NULL sub­

tree pointer. 

All the measures calculated for a particular tree are stored . 

in a record structure and this record structure is returned from 

the procedure random_tree. 

5. PROCEDURE FOR TRAVERSES THE TREE 

A procedure called output_tree is implemented to recur­

sively traversing the tree structure and indicating which nodes 

of the tree were connected to which other nodes in the tree. 

The procedure takes as a parameter the tree structure; T. The 

procedure traverses the tree structure recursively outputting 

the relevant data for each node of the tree. The first node that 

is visited is the root node of the tree. Data is output using the 

left and right sub-tree node numbers. The base case is reached 

when a pointer to the left sub-tree contains a NULL value. 

Once data have been noted for the node in question, the pro­

cedure calls itself using the left sub-tree and then the right 

sub-tree. As the trees were created at random, this provided a 

good source of test data for the program implementation. The 

output from this procedure is as follows: 

Node number 9 is connected to nodes 8 and 7 

Node number 8 is connected to nodes 3 and 4 

Node number 7 is connected to nodes 6 and 2 

Node number 6 is connected to nodes 1 and 5 
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6. THE MAIN PROCEDURE OF THE PROGRAM 

The program repeatedly generates random binary trees of 

the given size. It generates a tree of this size for each of the 

number of tests. In the case of width, depth and number of 

twigs, the relevant data are calculated and the values are 

added together for each of the measures taken. Dividing this 

value by the number of tests given an averge measure of this 

size of tree. The program performs these calculations repeat­

edly for each size of the tree in the given range. 

In the case of sub-tree sizes, for each test, the size of the 

left sub-tree is calculated and the number of times each 

instance occurs is stored in an array. The probability that a 

particular sub-tree size occurs is simply the number of times 

this instance occurs divided by the number of tests. 

The program diverts this output to several files. The out­

put is constructed in the form of two columns inorder that the 

information canbe plotted graphically. 

In the case of width, depth and number of twigs, each 

output file consists of two columns containing the number of 

nodes for each size of tree in the given range and the average 

value of the measure taken. For sub-tree sizes, the columns 

are the ranges of possible sub-tree sizes for this input and the 

probability that each of these instances occurred. Some data 

has been entered to the program. For each test performed 

using this random binary tree generation algorithm, graphical 

representations of this data are produced in Figures 1 - 4. 

7. ANALYZING RESULTS 

From the graphical representation of the dta, shown in 

figures 1-6, it can be seen that the number of twigs for a tree 

of given input size is proportional to the number of nodes in 

the tree. The width and depth of a tree of given input size 

seems to increase with some logarithmic function of the num­

ber of nodes. This shown more clearly in the case of the depth 

as it is with respect to the case of width. 

The most interesting by far of all the output data is the 

distribution of sub-tree sizes for a given tree size. On average, 

the probability of a particular instance of sub-tree size occur­

ring is constant with respect to the number of leaves in the 

tree. This experimental evidence correlates directly with the 

behavior of the binary search tree distribution. For the binary 

search tree distribution, the probability that a randomly gen­

erated binary tree having a particular left sub-tree size is con­

stant with respect to the number ofleaves in the tree. This pat-
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tern of behavior has beets shown to be exhibited by this ran­

dom binary tree-generating algorithm. For the binary search 

tree distribution, this probability is not only constant with 

respect to the number of leaves in the tree; it is of a particular 

value with respect to the number of leaves in the tree. This is 

also the case for the algorithm of this paper. 

Experimental evidence is now deemed strong enough to 

construct a mathematical proof that this random binary tree 

generation algorithm is equivalent to the binary search tree 

distribution. 

Depth analysis 

8. MATHEMATICAL PROOF OF EVUIVALENCE 

BETWEEN THIS ALGORITHM AND THE BINARY 

SEARCH TREE DISTRIBUTION. 

8.1 Binary Search Tree Distribution Method 

Produce a random n leaf tree, T. (L a R), i.e. tree has a 

root node, a, a left sub-tree L, a right sub-tree R. 

Probability [L has k Leaves]== - 1
- (If 1 ~ k ~ n- 1) 

n-1 

This is now a definition of the binary search tree distribu­

tion. 
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Figure 1 : Graph representing the depth analysis, showing the average maximum depth and the average greatest depth. 
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Figure 2 : Graph representing the width analysis, showing the average maximum width and the average greatest width. 
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Twigs analysis 
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Figure 3 : Graph representing the twigs analysis, showing the average number of twigs for 4000 nodes. 
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Figure 4 : Graph representing the twigs analysis, showing the average number of twigs for 8000 nodes. 
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8.2 Range Method 

Let S(n) be defined as the number of different 'struc­

tures' that can arise, starting witn n leaves. 

Level 0: n elements in range gives 

starting. 

ways of 

Levell: 
(

n-1) n-1 ~le~ents in range gives 
2 

ways of 

contmumg 

Level2: 
(

n-2) n-2 ~le~ents in range gives 
2 

ways of 

contmumg 

Level k: n-k elements in range gives 

continuing 

ways of 

Level n-2: 2 elements in range gives 

completing. 
( 22) ways of 

number of ways number of 

of choosing a structures 

R (n, k) = i subtree with L with this 

having a partiular set ofk 

set of k leaves leaves 

Where, the number of ways of choosing L having a par­

ticulaBet of k leave< ;, (:} the number of muctures with 

this set of k leaves is S(k), the number of ways of choosing a 

sub-tree for R given L has k leaves is (n -2) , the number 
k-1 

of structures for R given L has k leaves is S(n-k). Only half the 

number is required as 'mirror images' are created and there­

fore counted twice, so: 
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Therefore: 

S(n) ~ ):( ("; ') 

= "ri [rn- i} . (n- i- 1)) 
.oo \ 2 

S(n) = 

n-2 n-2 

11 (n - i} · 11 (n - i- 1) 
i= 0 i =0 

11 (n - i}-11 (i) 
i =2 i=O 

n n-1 

11 (i) . 11 (i) 
j~] j-J 

n! (n-1)! 

t-1 

Let R (n, k) be defined as the number of different 'struc­

tures' that correspond to binar tree, T, =(LoR), in which L 

has k leaves and R has n - k leaves. 

R (n,k) 
Probability [L has k leaves]= S (n) (V1~ k ~ n -1) 

number of ways number of 

of choosing a structures 

sub - tree for R with this 

given L has k set ofn- k 

leaves leaves 

8.3 Proof of Equivalence 

The algorithm of this paper should generate random bina­

ry trees in the same way as the binary search tree distribution, 

if, 

R(n,k) 

S(n) 
1 

=--(V 1 < k<n-1) n-1 - -
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Proof: 

R(n, k) =} [(~). S(k) -~~ ~ ~). S(n- k)] 

S(n) S(n) 

. 1 [( n! ) {k!(k-1)!) { (n-2)! ) ((n-k)! (n-k-1)!)~ 
=2 k!(n-k)! . zk-1 . (k-1)! (n-k-1)! . zn-k-1 J 

Therefore: 

1 [n!(n- 2)!] 
= 2 2k-!. 2n-k-! 

R (n, k) 
------
(S (n) n- 1 

n!(n- 1)! 
2n-! 

(n- 2)!. 2 
n-2 

2 k I. 2 n-k '. (n- 1)! 

n-1 

From this mathematical proof, it can be seen that the algo-

rithm of this paper generates random binary trees in the same 

way as the binary search tree distribution, therefore, the 

method of this paper is equivalent to the binary search tree dis-

tribution. 

n!(n- 1)! 
2n-! 
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