
Qatar Univ. Sci. J. (2000), 20 : 7-15

A RANDOM BINARY TREES GENERATION METHOD

.

By

Saud M.A. Maghrabi
Scientific Research Institute

Umm Al-Qura University

P.O. Box 6648

Makkah, Saudi Arabia.

~~LUI~ ~4o>:.A ~~
i.S~II"i ~~- "J4J.~JII"#I ~- ~y_;lii".,WI ~

~~_,.....JI ~~~ ~~- :t._fol ~- ,,tA : y. ~

0-o • w!.J J ~.J~I ~~ I¥-J J:iA;! \19;;11 w!_,l ~WI .b..a_,:iA uSl.J , w!_,ll I~ J ~I i.S~ J:iA;! ~j)_F.
6- ~ ~ ,. t:. t:.

~ u.o ~~ .J~'il u.o ~li.. .tc.~ ~ ~J).F- ~bl r-* ul J \.l~l ~.J 1~1 ,u'iWI j)~ ~

uUI ~ · ~.lS: , -:.--11 ~~ I .:.11 j)~ ~i · , ·1 ...=:.c. · ~~:. · ~\II ~uuw ~I I .:.11 ~ UA .J '-"'"""" ~ ~~ UA.J ~...r-~.J. •. ~_,...,....

~\.l:i.ll .J~\11 ~UU'i ~ · I · -:. .. L-: ~ .b. ~I I~ · w--11 ·I .~ · I .:.II~ w! i ~ :.._q ~ . • ~ .J.J _,::>. ~.J ~ .r- . UA ""6-' u. ~ .J.J ~ ~ .J '-:? Y.r

· ~ · I .:.II j)~ ~ .~1 w! 4.16.. .b..a ~ 1- ~ · I .:.II j)~ bi ::.. .lAW~ ·1 :. · 1~:. .• c.JC ~ .).) ~ .J ~ .J ~ t..s- ~ .).) ~ ~ r=~ ~ ~ . ~ ~ ~
I~ ~j.JIY:.. J:.b.:i.J ~~.J~ UAi .ill.J , ~\.l:i.ll ~I~~ e;:J.fJ.J , ~~I e;:J.fJll :j)~i U:!.Jfijll ~jjlll

.~1

KEY WORDS : Binary Trees Generation, Data Structures, Binary Trees Search and Analysis of Algorithms.

ABSTRACT

There are two widely used random distributions on binary trees, namely the binary search tree distribution and the uniform

distribution. By analyzing the performance of algorithms that manipulate binary trees generated at random, it is possible to

assess the average case performance of the algorithm. This average case performance is often a more useful reflection of the

algorithm's suitability than the worst-case performance. An algorithm may have a worst-case run time that is of exponential

time complexity, but an average-case run time that is of polynomial time complexity. In such cases, one wishes to assess the

performance of an algorithm on a 'typical' range of tree structures and thus relate properties of randomly generated trees, such

as depth, to aspects affecting the algorithm's run-time. The purpose of this paper is to design and implement a random binary

trees generation algorithm that considers the average case performance. The algorithm is differ from both the uniform distrib­

ution and the binary search tree distribution. Analysis of the behaviour of the algorithm is given.

7

A Random Binary Trees Generation Method

1. INTRODUCTION

Two commonly used random distributions of binary trees

are the uniform distribution, escrimed in [1, 4, 6, 7], and the

conceptually simpler binary search tree distribution as

described in [2, 3, 5]. When we used the uniform distribution

to generate binary trees, every 2n-1 node tree as equally like­

ly to be generated, whereas the binary searc tree distribution

is a biased distribution. The uniform distribution is biased

towards producing trees that are extremely unbalanced in

terms of the number of leaves in the left and right sub-trees.

For the uniform distribution, the probability that a randomly

generated tree Tn = L oR, where o denotes a single node of a

tree; L o R, means that a tree with root nodeo , left sub-tree

L, and right sub-tree R, is as follows.

ITII·IT • .;!
Probability [iLl = i] = --

ITnl

With referenc to [4], it can be shown that

Tn =-~-(~n) z 4n
4n- 2 n!

Probability [ILl= i} z I Til~ 0 as i ~=
4'

For the binary search tree distribution, the probability that

a randomly generated ~ee having a particular left sub-tree

size is constant with respect to the number of leaves in the

tree.

The method is this paper is differ from both the uniform

distribution and the binary search tree distribution is signifi­

cant ways. The algorithm of thispaper is nonuniform; i.e.

node ever 2n-1 is equally like to be generated, unlike the algo­

rithm of references [1, 4, 6, 7]. Also the algorithm behaves

differently from the binary search tree distribution. The bina­

ry search tree distribution is generated as the output of a

recursive random algorithm, whereas thisalgorithm is itera­

tive. We will prove that the method of this paper has the same

distribution as the binary search tree distribution.

The aim of the method of this paper is to analyze these

differences byconsidering the average case behavior of the

8

following standard measures on trees:

• Depth : the depth of a tree is the length of the longest

path from a leaf to the root node.

• Width : the k th level of a binary tree is the set of nodes

at depth k from the root node. The width of a binary tree

is the maximum number of nodes on a single level. The

widthis at lest 2 and at most n/2 for an n node binary tree.

• Number of twigs: a twig is a node in the tree, both of

whose predecessor nodes are leaves.

• Sub-tree sizes : the probability that a randomly gen­

erated tree has a left sub-tree size of 2k-1, thus the distri­

bution of sub-tree sizes for each value of k between I and

n-1. This probability distribution of sub-tree sizes has

been widely studied using the uniform distribution and

the binary search tree distribution.

2. MODULARIZATION

An algorithm for random binary tree generation is sup­

plied. Let range= { 1,2,3, ... , n}. The initial steps of the algo­

rithm are:

while next_node < 2n

{

}

select 2 random nodes from range

remove these two nodes from range

add next_node to range

update the set of edges. E

next_node: = next_node + 1

This is re-written to deal with the problem of selecting

the same node twice, as

while next_node < 2n

{

}

select a node randomly from range

remove this node from range

select another node from range

remove this node from range by adding next_node

update the set of edges. E

next_node: = next-node + 1

Saud M. A. Maghrabi

This is then expanded as follows:

while next_node < 2n

1. (a) select a position in range to take a node

from

(b) assign the value at this position to u

2. Move the value stored at the position of the

number of choices into this position

3. (a) select a position in range to take a node

from using n-1 choices

(b) Assign th value stored at this position to v

4. Replace the value at this position with

next_node

5. Update the set of edges, E

6. next_node : = node + 1

The final form of the random binary tree generation

algorithm is as follows:

Input: n EN.

Output: Random n leaf, 2n-1 node binary tree T(V,E).

Method:

Range: = {1 2 3, .. . , n};

E: = 0;

V =range;

next-node: = n + 1;

while next_node < 2n

{

}

(u, v): = Random pair of distinct nodes from

Fringe;

range:= range- {u,v};

range: =range u {next_node};

V = V u {next_node};

E: =Eu {{U,next_node}, {v,next_node}};

next_node: = next_node+ 1;

return T(V,E);

The algorithm provides enough information for a

9

top-down program design and implementation to be per­

formed. A procedure called random_tree has been written

toimplement this algorithm.

3. DATA STRUCTURES

3.1 Range Structure

The data structure range represents a list of integers,

which take the values from 1,2, ... , n. This structure is repre­

sented by a one-dimensional array of integers. By considering

the operations to be performed on this structure, it is noticed

that the algorithm requires the repeated selection of two ran­

dom elements from this set of numbers to be 'connected' to

the value next_node. Once these two elements had been

selected, they were never to be chosen again in order that a

node in the three and exactly zeroor two successors. This fact

lead one to choose a linked list structure rather than an array,

as elements that are selected could be deleted from the list and

new ones added. The drawback with using a linked list to rep­

resent this structure would be that it would make the execu­

tion of the program slightly more difficult to follow. It was

therefore decided to use the one-dimensional array to repre­

sent range, and in order to overcome the possibility of rese­

lection of nodes, the order in which the nodes in the list were

stored could be manipulated.

For example, supposing we start with an input of n=5 to

produce a 5 leaf tree; at the start ofthe program's execution,

the structure range would look something like this:

Once the first element had been selected, and assigned to

the variable u, this element is not to be selected again. The

element is replaced by the element at the position of the num­

ber of choices and the next selectio is made from the n-1 ele­

ments in the list. Ifthe element number three in the array was

chosen first, then this wouldbe replaced by the element num­

ber 5, and selection would then continue using only the first

four numbers. In the example above, the array would now he

of the form:

and the next selection would be taken from the elements num­

bered 1, 2, 5 and 4. Similarly, when the second selection has

been made, the next_node element, which is then added to

this list, is placed in the position where the last selection was

A Random Binary Trees Generation Method

taken from. For example, selecting element number 2 would

cause element number 6 to replace it giving:

This would then continue throughout the execution of the

loop, each time making a choice from one fewer elements

until the constraint oncontinuingthe loop no longer holds.

3.2 The Edge Set Structure

The data structure E in the algorithm represents the set of

internal nodes of the tree and holds information to discern

which of these nodes are connected to which other nodes in

the tree, i.e. a set of edges. Each element in the set therefore,

has associated with two integers. The edge set is represented

as a two dimensional array. The advantage set is represented

as a two dimensional array. The advantage of choosing this

data structure is that one of the indices of the array could be

indexed by the values n + l, ... , 2n-l representing the node num­

bers for the non-leaf nodes of the trees of the tree. Also using

this data structure makes it easier to calculate the number of

twigs in the tree. The twigs in the tree are the nodes in the

range n+l, ... , 2n-l, which are connnected to tne nodes num­

bered less than n+l.

For example, using an input of n==5, the data structure E

could look something like:

6 7 8 9

1 [:!JTITI!]
2~

nodes numbered 6 and 8 are twigs as they are connected to

nodes 1 and 5 and 3 and 4 respectively, all of which are leaf

nodes as their node numbers are less than or equal to n.

3.3 The Tree Structure

The structure T represents the tree itself. The program

requires a data structure that can be used recursively to form

the tree, due to the recursive nature of this definition of a

binarytree. The choice of a linked list in this situation to rep­

resent the tree is fairly obvious. Each element in the list

wouldcontain an integer field to represent the node number

and it would alsocontain two pointers to two sub-trees which

are themselves binary trees. The pointers would contain

NULL values if the node was a leaf of the tree as it would

have no successors. In the previous example, the tree structure

10

would look as follows:

Using this implementation wouldmake the calculations of

width; dept etc. easier as the tree could be parsed recursively

to calculate the relevant data.

4. CALCULATING MEASURES

Once the code had been implemented to generate ran­

domly, a binary tree using the supplied algorithm, it was then

necessary to include procedures/functions that would investi­

gate this tree structure to calculate the standard measures

described earlier, i.e. width, depth etc.

4.1 Twigs

In order to calculate the number of twigs in the tree, the

tree structure itself is not necessary. The data structure, E, is

chosen to make this task less complicated. The structure is

indexed in one-dimension by the node numbers of all the

internal nodes of the tree. If both of the values stored at one

of these indices is less than or equal to the number of leaves­

input, then the index value must be the node number of a twig.

The function num_twing takes the set of edges, E as its

parameter and returns the number of twigs as a result. The

function searches the two dimensional array through index 1

and the number of twigs is incremented if, for one of these

indices, both entries have a number less than the first index

position of the array i.e. less than n +I.

4.2 Width and Depth

In order to calculate the width and depth of the tree, it

was decided that a list of the widths at each ofthe levels was

to be constructed. This makes it not only possible to calculate .
the greatest width of the tree, but also as a consequence, gives

the depth of the tree as well. The procedure calledjill_set per­

forms this task. It takes three parameters: a one-dimensional

array to hold the list of widths at each level, the tree structure,

T, and the current level.

Saud M. A. Maghrabi

The initial call is made with the empty list, T, and the

level number 1. Each time a call ismade to this procedure, the

width at the current level is incremented by 1. If teh left sub­

tree pointer does not contain a NULL value, then the proce­

dure calls itself passing the list of widths, T and the next level

as parameters. As each node is visited only once, on comple­

tion of the procedure, the list contains the width at eachlevel

of the tree. A simple function to retrieve the maximum value

in this list, grt_maxim, reveals the witdh of the tree.

Once this list of widths is created, it is easy to use this to

calculate maximum depth. The function called get_depth cal­

culates the value for the depth of the tree bycounting the num­

ber of entries in the list, which contain a non-zero value.

4.3 Sub-tree Sizes

A function, get_size, was also added to calculate the size,

in nodes, of any given binary tree. The function takes a tree

structure as a parameter and recursively traverses the tree

adding one to its size when encountering a non-NULL sub­

tree pointer.

All the measures calculated for a particular tree are stored .

in a record structure and this record structure is returned from

the procedure random_tree.

5. PROCEDURE FOR TRAVERSES THE TREE

A procedure called output_tree is implemented to recur­

sively traversing the tree structure and indicating which nodes

of the tree were connected to which other nodes in the tree.

The procedure takes as a parameter the tree structure; T. The

procedure traverses the tree structure recursively outputting

the relevant data for each node of the tree. The first node that

is visited is the root node of the tree. Data is output using the

left and right sub-tree node numbers. The base case is reached

when a pointer to the left sub-tree contains a NULL value.

Once data have been noted for the node in question, the pro­

cedure calls itself using the left sub-tree and then the right

sub-tree. As the trees were created at random, this provided a

good source of test data for the program implementation. The

output from this procedure is as follows:

Node number 9 is connected to nodes 8 and 7

Node number 8 is connected to nodes 3 and 4

Node number 7 is connected to nodes 6 and 2

Node number 6 is connected to nodes 1 and 5

11

6. THE MAIN PROCEDURE OF THE PROGRAM

The program repeatedly generates random binary trees of

the given size. It generates a tree of this size for each of the

number of tests. In the case of width, depth and number of

twigs, the relevant data are calculated and the values are

added together for each of the measures taken. Dividing this

value by the number of tests given an averge measure of this

size of tree. The program performs these calculations repeat­

edly for each size of the tree in the given range.

In the case of sub-tree sizes, for each test, the size of the

left sub-tree is calculated and the number of times each

instance occurs is stored in an array. The probability that a

particular sub-tree size occurs is simply the number of times

this instance occurs divided by the number of tests.

The program diverts this output to several files. The out­

put is constructed in the form of two columns inorder that the

information canbe plotted graphically.

In the case of width, depth and number of twigs, each

output file consists of two columns containing the number of

nodes for each size of tree in the given range and the average

value of the measure taken. For sub-tree sizes, the columns

are the ranges of possible sub-tree sizes for this input and the

probability that each of these instances occurred. Some data

has been entered to the program. For each test performed

using this random binary tree generation algorithm, graphical

representations of this data are produced in Figures 1 - 4.

7. ANALYZING RESULTS

From the graphical representation of the dta, shown in

figures 1-6, it can be seen that the number of twigs for a tree

of given input size is proportional to the number of nodes in

the tree. The width and depth of a tree of given input size

seems to increase with some logarithmic function of the num­

ber of nodes. This shown more clearly in the case of the depth

as it is with respect to the case of width.

The most interesting by far of all the output data is the

distribution of sub-tree sizes for a given tree size. On average,

the probability of a particular instance of sub-tree size occur­

ring is constant with respect to the number of leaves in the

tree. This experimental evidence correlates directly with the

behavior of the binary search tree distribution. For the binary

search tree distribution, the probability that a randomly gen­

erated binary tree having a particular left sub-tree size is con­

stant with respect to the number ofleaves in the tree. This pat-

A Random Binary Trees Generation Method

tern of behavior has beets shown to be exhibited by this ran­

dom binary tree-generating algorithm. For the binary search

tree distribution, this probability is not only constant with

respect to the number of leaves in the tree; it is of a particular

value with respect to the number of leaves in the tree. This is

also the case for the algorithm of this paper.

Experimental evidence is now deemed strong enough to

construct a mathematical proof that this random binary tree

generation algorithm is equivalent to the binary search tree

distribution.

Depth analysis

8. MATHEMATICAL PROOF OF EVUIVALENCE

BETWEEN THIS ALGORITHM AND THE BINARY

SEARCH TREE DISTRIBUTION.

8.1 Binary Search Tree Distribution Method

Produce a random n leaf tree, T. (L a R), i.e. tree has a

root node, a, a left sub-tree L, a right sub-tree R.

Probability [L has k Leaves]== - 1
- (If 1 ~ k ~ n- 1)

n-1

This is now a definition of the binary search tree distribu­

tion.

40.---~

A
v
e
r
a
g
e

d
e
p
t
h

30 ·· ... ·· ..

20

10

0~~--~--~~--~--~~--~--~~--~--~~~
1.00 1201.00 2401.00 3601.00 4801.00 6001.00 7201.00

601.00 1801.00 3001.00 4201.00 5401.00 6601.00 7801.00

Number of nodes

average greatest depth

average maximun depth

Figure 1 : Graph representing the depth analysis, showing the average maximum depth and the average greatest depth.

A
v
e
r
a
g
e

w
i
d
t
h

Width analysis
1000~--~

800

600 ,... .. /

400

--

1.00 1201.00 2401.00 3601.00 4801.00 6001.00 7201.00
601.00 1801.00 3001.00 4201.00 5401.00 6601.00 7801.00

Number of nodes

average greatest width

average maximun width

Figure 2 : Graph representing the width analysis, showing the average maximum width and the average greatest width.

12

A
v
e
r
a
g
e
n
u

Saud M. A. Maghrabi

Twigs analysis

BOOr---~

700

600

500

m 4oo
b
e 3oo
r

0
f

t
w
i
g
s

200

100

601.00 1201.00 1801.00 2401.00 3001.00 3601.00
301.00 901.00 1501.00 2101.00 2701.00 3301.00 3901.00

Number of nodes

Figure 3 : Graph representing the twigs analysis, showing the average number of twigs for 4000 nodes.

A
v
e
r
a
g
e
n
u
m
b
e
r

0
f

t
w
i
g
s

Twigs analysis
1600r---.

1400

1200

1000

800

600

400

200

1201.00 2401.00 3601.00 4801.00 6001.00 7201 ,oo
601.00 1801.00 3001.00 4201.00 5401.00 6601.00 7801.00

Number of nodes

Figure 4 : Graph representing the twigs analysis, showing the average number of twigs for 8000 nodes.

13

A Random Binary Trees Generation Method

8.2 Range Method

Let S(n) be defined as the number of different 'struc­

tures' that can arise, starting witn n leaves.

Level 0: n elements in range gives

starting.

ways of

Levell:
(

n-1) n-1 ~le~ents in range gives
2

ways of

contmumg

Level2:
(

n-2) n-2 ~le~ents in range gives
2

ways of

contmumg

Level k: n-k elements in range gives

continuing

ways of

Level n-2: 2 elements in range gives

completing.
(22) ways of

number of ways number of

of choosing a structures

R (n, k) = i subtree with L with this

having a partiular set ofk

set of k leaves leaves

Where, the number of ways of choosing L having a par­

ticulaBet of k leave< ;, (:} the number of muctures with

this set of k leaves is S(k), the number of ways of choosing a

sub-tree for R given L has k leaves is (n -2) , the number
k-1

of structures for R given L has k leaves is S(n-k). Only half the

number is required as 'mirror images' are created and there­

fore counted twice, so:

14

Therefore:

S(n) ~):(("; ')

= "ri [rn- i} . (n- i- 1))
.oo \ 2

S(n) =

n-2 n-2

11 (n - i} · 11 (n - i- 1)
i= 0 i =0

11 (n - i}-11 (i)
i =2 i=O

n n-1

11 (i) . 11 (i)
j~] j-J

n! (n-1)!

t-1

Let R (n, k) be defined as the number of different 'struc­

tures' that correspond to binar tree, T, =(LoR), in which L

has k leaves and R has n - k leaves.

R (n,k)
Probability [L has k leaves]= S (n) (V1~ k ~ n -1)

number of ways number of

of choosing a structures

sub - tree for R with this

given L has k set ofn- k

leaves leaves

8.3 Proof of Equivalence

The algorithm of this paper should generate random bina­

ry trees in the same way as the binary search tree distribution,

if,

R(n,k)

S(n)
1

=--(V 1 < k<n-1) n-1 - -

Saud M. A. Maghrabi

Proof:

R(n, k) =} [(~). S(k) -~~ ~ ~). S(n- k)]

S(n) S(n)

. 1 [(n!) {k!(k-1)!) { (n-2)!) ((n-k)! (n-k-1)!)~
=2 k!(n-k)! . zk-1 . (k-1)! (n-k-1)! . zn-k-1 J

Therefore:

1 [n!(n- 2)!]
= 2 2k-!. 2n-k-!

R (n, k)

(S (n) n- 1

n!(n- 1)!
2n-!

(n- 2)!. 2
n-2

2 k I. 2 n-k '. (n- 1)!

n-1

From this mathematical proof, it can be seen that the algo-

rithm of this paper generates random binary trees in the same

way as the binary search tree distribution, therefore, the

method of this paper is equivalent to the binary search tree dis-

tribution.

n!(n- 1)!
2n-!

REFERENCES :

[1] Atkinson, M. D., and Sack, J. R., 1992, "Generating

Binary Trees at Random", Information Processing Letters,

41, 21-23.

[2] Devroye, L., and Reed, B., 1996. "On the variance of the

Height of Random Binary Search Trees,", Siam Journal on

Computing, 24, 1157-1162.

[3] Devroye, L., and Robson, J. M., 1997. "On the

Generation ofRandom Binary Search Trees", SIAM

Journal on Computing, 28, 1141-1162.

[4] Dunne, P. E., Gittings, C. j., and Leng, P. H., 1995.

9. CONCLUSION "Multiprocessor Simulation Strategies with Optimal

In this paper, a method for generating random binary trees Speed-up". Information processing Letters, 54, 23-33.

has been described. The method is differ from both the uni- [5] Kim, S. K., 1997. "Logarithmic width, Linear Area

form distribution and the binary search tree distribution. These Upward Drawing of AVL Trees", Information Processing

differences have been analyzed by considering the average Letters, 64, 303-307.

cases of the following: the depth of the tree, the width ofthe [6] Korsh, J. F., 1993. "Counting and Randomly Generating

tree, the number of the nodes in the tree, and the sub-tree sizes. Binary Tree', Information Processing Letters, 45, 291-

The experimental evidence, along with the mathematical 294.

proof, is conclusive to say that for the case of full binary trees, [7] Martin, H. W. and Orr, B. J., 1990. "A Random Binary

the random binary tree generation algorithm of this paper and Tree Generator". In: Computing Trends in the 1990's,

the binary search tree distribution are in fact the same distrib- ACM Seventeenth Computer Science Conf., Louisville,

ution. KY (ACM, New York, 1990), 33-38.

15

