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ABSTRACT

We review some results in problems of estimating a finite population total (mean) through a sample sur-
vey. Section 2 considers inference under a fixed population model and Section 3 addresses the same prob-
lem when the finite population is looked upon as a sample from a superpopulation and technique of theo-
ry of prediction are used. Since the probability density function of data obtained from a sample survey
equals the selection probability of the sample, thus making the likelihood function ‘flat’; use of the likeli-
hood, when a prior is assumed for the finite population parameters, restricts one to model-based inference,
in case a non-informative sampling design (s.d.) is used for the survey. The data obtained through a set
(sample) are minimal sufficient (though not complete sufficient) for inference and hence the use of Rao-
Blackwellization provide improved estimators. Noting the non-existence of a uniformly minimum vari-
ance unbiased estimator for population total in general, review is made of the results on admissibility of
estimators for a fixed s.d. in the relevant classes. If, however, the survey population is looked upon as a
sample from a superpopulation &, optimum strategies are available in certain classes. Under the prediction-
theoretic approach, a purposive sampling design becomes an optimal one under a wide class of superpop-
ulation models. This is in direct conflict with the classical probability sampling-based theory. However,
these model-dependent optimal strategies fail (invoke large bias or large mean square error (mse)) if the
assumed models turn out to be wrong. Use of probability sampling salvages the situation. A class of strate-
gies, which depend both on superpopulation model and sampling design, have been suggested. Finally, the
problem of asymptotic unbiased estimation of design variance of these strategies under multiple regres-
sion superpopulation models have been reviewed.
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Some Inferential Problems in Finite Population Sampling

1. Introduction

Let P= {1, ...,i..., N} denote a finite population of N (a known number) identifiable units labelled 1,
2, ..., N. Associated with each i are two real quantities (yl., x), the value of the main variable ‘y’ and a
closely related auxiliary variable ‘x’ respectively, y = (y p o Vs X=(x, ..., X)) are points in R". The quan-
tity p. = x,/ X; where X = ZNZ.: ; X, 18 often called the size-measure of unit i. The problem is that of esti-
mating a parametric function 6 (y), often the population total Y = ZNi: ,¥.(population mean y = Y/ N), pop-
ulation variance S’ = ZNi= L0, - )7)2/ N, through survey sampling, for which a sample is selected from P
according to a sampling design (s.d.) p.

LetS={i, ... i (S)}, (I i <N, t= 1, ...,N), denote a sample (sequence) of units, obtained by n(S) draws
from P, i, denoting the unit selected at the #th draw, I, not necessarily unequal to i ,even if z # ¢ (which

happens in a with replacement (wr) sampling). We denote by s =(j, ..., J,), a sample (set) of » units, / <

»
J;<J,--=j <N.The following concepts are equally valid for S and s. A s.d. is a combination (S, p), where
S = {s}; p(s) denoting the probability of selecting s, p(s) > 0, ZS&S p(s)=1.

Let & =X . p(s), M, = ZM.J. p(s) denote the first order and second order inclusion probabilities, respec-
tively. A s.d. with 7, &t p, is often called a m-ps design. Let p,= v : p(s) > 0) = v(s) = n}, the class of
all fixed effective size (number of distinct units, v (s)) [F.S.] (n) designs. Data obtained through S are d’ =
{(k, Y), k< S} and through s are d = {(k, Y), k < s}. Clearly any d’can be summarized to d by obtaining
s corresponding to S. |

An estimator e (s, y) is a function defined on § x R such that for a given s, its value depends on y only
through those i for which i « 5. A combination (p, e) is called a sampling strategy. e is unbiased for 8 if £
(e (s, y) = 0(y) Vy e R'(E denoting expectation with respect to (wrt) s.d. p). The variance of e is V' (e) =
E(’e - 8 (y)y provided e is unbiased for 8 (y). We shall denote the Horvitz-Thompson estimator (HTE) as
€= Zies ¥,/ The customary estimator in probability proportional to size wr (ppswr) sampling design
would be denoted as ey, = % Siesyilp; -

A sampling strategy ( a design, estimator pair) H (p, e) is said to be better than a sampling strategy H’
(', €) in the sense of variance (H H') if

VIH@ e} <V{H (p,e)}Vy <R,

with strict inequality holding for at least one y. If p is kept fixed, an unbiased estimator e is better than
another estimator ¢’ if Vp(e') < Vp(e’) with strict inequality holding for at least one y. For a fixed p, an esti-
mator e* is uniformly minimum variance unbiased estimator (UMVUE) in a class of unbiased estimators

n = {e} if it is better than any other estimator in 7.

2. Inference Under A Fixed Population Set-up

We review in this section some inferential aspects in sampling under a fixed population model, i.e. when
the population P along with the associated y, x values are considered as fixed entities and no probability
distribution is assumed. Subsection 2.1 deals with the probability density function of data, the likelihood
function of y for a given d (d") and use of the likelihood function in making inference. The concept of suf-
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ficiency and Rao-Blackwellization is considered in the next subsection. Uniformly minimum variance
unbiased estimation, admissibility of estimators and average variance of estimators under superpopulation
models are considered subsequently.

2.1 The p.d.f of Data and the Likelihood Function of y
Let D" (D) be a random variable corresponding to data d’ (d). Let also y'(\) be a random variable hav-
ing values S(s) in S. A data point d’(d) is said to be consistent with a chosen parameter vector y if d’ (d)
can be obtained from y. |
For example d’ = {(1, 8), (3, 7), (4, 9)} is consistent with y = {8, 11, 7, 9, 11}.
Let for a given &’ (d), Q ,(Q,) be the set of y for which d’ (d) is consistent.
The probability density function ( pdf) of D’ is
1, @y) =Pl{kypke s} =d%y
=Ply’=S]PID’=d’| y'= Sy] 2.1)
=p(8)6(dy),
where 6 (d” y) = 1(0) if d”is consistent (inconsistent) with y. Thus
S @5 y)=p (S (0) fory € Q, (otherwise)
Similarly, pdf of D is
| (@5 y)=p (s) (0) for y € Q, (otherwise) (2.2)

2.1.1 Likelihood Function of y

Given the data D’ = d’, the likelihood function of parameter vector y is

L(y|d)=f,d5y)=p(S) (0)ify € Q, (otherwise) (2.3)
Similarly, the likelihood function of y given D =d is
Ly|d)=/1,(d,y)=p (s) (0)ify € Q (otherwise) (2.4)

The likelihood functions are, therefore, ‘flat’, taking values p(S)(p(s)) for y € Q (e ,) and zero else-
where. There does not exist any unique maximum of the likelihood and hence no maximum likelihood
solution of any parametric function 8 (y) exists. The likelihood functions (2.3) and (2.4) only tell us that
ally e Q (€ ) are equi-probable and tell nothing about the unobserved components of the y-vector. The
likelihood functions (2.3) and (2.4), first considered by Godambe (1966), are therefore, non-informative.
However, if a superpopulaton model & is postulated for the population vector y, the likelihood function
becomes informative (see Royall (1976); Brecking and Chambers (1990), for example).

2.2 Sufficiency, Rao-Blackwellization

The concept of sufficiency and Rao-Blackwellisation in survey sampling in connection with resolving
the problem — whether one is required to consider the whole body of data available through a sequence
sample or the data obtained from a set sample is enough for making inference was first considered by Basu
(1958). As in the traditional statistical theory, if a sufficient statistic is available, any estimator can be
improved upon by Rao-Blackwellization.

Definition 2.1 A statistic u (D) is a sufficient statistic for y if the conditional distribution of D’ given
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u(D’) = u, is independent of y, provided the conditional distribution is well-defined. Let z (D) be a statis-
tic defined over the range space of D’ such that z (D’) = d, i.e., z reduces ¢’ obtained through a sequence
sample s to the data d for the corresponding set. As an example, if &’ = {(2, 5), (4, 7), (2, 5)}, z (d) = {(2,
5), (4, 1)}

Theorem 2.1 (Basu and Ghosh, 1967) For any ordered design p, the statistic z (D) is sufficient for y.

Thus, one need not consider the sequence sample and look at the sequenced data d’. The set sample s
and the corresponding data d should be sufficient for making inference. It follows that z (D) is minimal
sufficient fory.

For any estimator e (D) for 6 define e (d) = E {e (D) | z (D") = d}. Since z (D’) is sufficient for y, e (d)
is independent of any unknown parameter, and depends on D’ only through z (D) and as such can be taken
as an estimator of 6. Since D is a sufficient statistic e (D) will be a better estimator than e (D).

Theorem 2.2 (Basu and Ghosh, 1967) Let e (D’) be an estimator of 6. The estimator e (d)=E {e (D)
| z (D’) = d} has the properties: ‘

+ (i) E(e) = Ele,)

» (ii) MSE(e,) < MSE(e) with strict inequality Vy € RViff P {e#e,:y} >0.

2.3 Uniformly Minimum Variance Unbiased Estimation

Godambe (1955) first observed that in survey sampling no UM V-estimator in the class of all linear unbi-
ased estimators of population total exists for any p in general. The proof was subsequently improved by
Hege (1965), Hanurav (1966), Ericson (1974) and Lanke (1974).

Definition 2.2 A s.d. p is said to be a unicluster design if for any two samples s, s,

{p(s1)>0,p(s2)>0;s1;ts2} =5 NS5, =9,

i.e. either two samples are identical or disjoint.

Theorem 2.3 (Lanke, 1974) A s.d. p admits a UMVU-estimator in the class of all linear unbiased esti-
mators iff p is a unicluster design with ©,> 0 V i.

Theorem 2.4 (Basu, 1971) For any non-census design p (with ©. > 0 V i), there does not exist any
UMVUE of Y in the class of all unbiased estimators.

Thus, in general, there does not exist any UMVU-estimator for any s.d.p. Hence, there does not exist
any UMVU sampling strategy in general.

2.4 Admissibility Of Estimators

Definition 2.3 For a fixed s.d. P, an estimator e is said to be an admissible estimator of ¥ within a class
C of estimators iff there does not exist any estimator in C which is uniformly better than e.

Clearly, within the same class C there may exist more than one admissible estimator. Admissibility
ensures that an estimator is uniquely best in C at least at some point y in the parametric space. In the
absence of a UMV U-estimator, one should choose an estimator within the class of all admissible estima-
tors. However, a slightly inadmissible estimator may sometimes possess some practical advantages over
an admissible estimator and may be used in preference to the later. An important theorem is stated below
without proof.
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Theorem 2.5 (Cassel, Sarndal and Wretman, 1977) For any s.d. p, with ©.> 0 (Vi), the generalized dif-
ference estimator e (a) = Z y e+t AA= 2 a) is admissible in the class of all unbiased estimators
of Y (Here, a, are some known constants)

A corollary to this theorem is that the Horvitz-Theorem estimator is admissible in the class of all unbi-
ased estimators of ¥ .

2.5 Average Variance Of A Strategy Under A Superpopulation Model

Assume that the value of y on i is a realization of a random variable ¥, (i =1, ..., N'). Hence the value
y of a survey population P may be looked upon as a particular realization of a random vector
Y=(Y}, ..., Y,) having a superpopulation distribution & , indexed by a parameter vector 6, 0 € © (the para-
meter space). The class of priors {€, 6 € ©} is called a superpopulation model.

A good deal of inference in survey sampling emerges from the postulation of a suitable prior & for Y
and methodologies have been developed to produce optimal sampling strategies based on &. Some of these

will be reviewed in the next section.

2.5.1 Average Variance under §

Since in most cases the expression for variances of different strategies are complicated in nature and are
not amenable for comparison, one may take the average values of variance under an assumed appropriate
superpopulation model & and compare their average variances. In this section we shall consider & only for
getting the average variance of a strategy. |

The average variance (AV) of an unbiased strategy (p, ) under & is given by £Vp(e). A strategy H, will
be better than an unbiased strategy H,(H, | H,) if AV (H)) < AV (H,).

We recall a very important result due to Godambe and Joshi (1965). The following theorem shows that
there exists a lower bound to the average variance of p-unbiased strategies under a very general super-
population model &, '

Theorem 2.6 (Godambe and Joshi, 1965) Consider model § : Y, ..., Y, are independent with &(Y) =
v(¥)= ozi (i=1, ..., N). For any unbiased sampling strategy (p, e), with the value of first order inclusion
probability 7, N

eV (p, e)z;o{.(,%-n (2.5)

Corollary 2.1 The lower bound (2.5) is attained by e, applied to a FS(n)-design with
T ogl), i= ., N. In particular, if i, = Bx (3, a constant), any FS 7 - ps design applied to e, attains
the lower bound in (2.5).

3 Inference Under Superpopulation Based Approach
Brewer (1963), Royall (1970, 1976), Royall and Herson (1973) and their coworkers considered the sur-
vey population as a random sample from a superpopulation and attempted to draw inference about the pop-

ulation parameter from a prediction-theorist’s viewpoint.
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3.1 Principles Of Inference Based On Theory Of Prediction

We assume that the value y, on i is a realization of a random variable Y,(i = 1, ..., N). For simplicity,
we shall, henceforth, use the same symbol ¥, to denote the population value as well as the random variable
of which it is a particular realization, the actual meaning being clear from the context.

We assume throughout that there is a superpopulation distribution & of y.

Let T's denote a predictor of ¥ or 7 based on s (the specific one being clear from the context). Note that
population total ¥ (mean ) are now random variables and not fixed quantities.

Definition 3.1 7'sis model-unbiased or &-unbiased or m-unbiased predictor of ¥ if

&T) = &) = fi(say) V @€ @and Vs :p (s) >0 | (3.1)

Definition 3.2 A predictor Tsis design-model unbiased (or p&-unbiased or pm-unbiased) predictor of ¥

if ,
Ee(T) =pVeoe®© (3.2)

Clearly, a m-unbiased predictor is necessarily pm-unbiased.

For a non-informative design where p(s) does not depend on the y-values, order of operation E, € can
always be interchanged.

Two types of mean square errors (mse’s) of a sampling strategy (p, T's) for predicting Y has been pro-
posed in the literature:

(a)e MSE (p,T) =e E(T —-T)2 = M (p,T) (say)
(b) EMSe (p,T) =Ee(T —w)?2 where p=2u, =) = M, (p,T) (say)

It has been recommended that if one’s main interest is in predicting the total of the current population
from which the sample has been drawn, one should use M as the measure of uncertainty of (p, 7). If one’s
interest is in predicting the population total for some future population, which is of the same type as the
present survey population (having the same ), one is really concerned with i, and here M, should be used
(Sarndal, 1980 a). In finding an optimal predictor, one minimizes M or M, in the class of predictors of
interest.

For a given s, the optimal m-unbiased predictor of 7 (in the minimum € ( T - T)*-sense), as derived by
Royall (1970) is,

I =Zy+Us . (3.3)

where
eU; =& Q) —Hs, (3.4.1)
v (T 2v(T), (3.4.2)

for any U'S satisfying (3.4.1), where § = P — s. It is clear that T+S, when it exists, does not depend on the
sampling design. An optimal design-predictor pair ( p, T:) in the class (p,%) is, therefore, one for which

M(p* Ty <M (p . T)).
for any p € p a class of sampling designs and T’, any other m-unbiased predictor € T.
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Example 3.1

Consider the polynomial regression model:

J

J
eV lxy) =Z 0 3,

=0 J
vV, lx)= 6 vx), k=1, .., N, (3.5)
CWpy |x,x)=0kzk=1,..,N, (3.6)

where x,’s are assumed fixed (non-stochastic) qpantities, [3j (j=1,..,J); o are unknown quantities, v(x,)
is a known function of x,, 5. = 1(0) if the term x] is present (absent ) in i,. The model (3.5), (3.6) has been
denoted as € (6, 6, ... , 0, ; v(x)) by Royall and Herson (1973). The best linear unbiased predictor (BLUP)
of Y under this model is

15 (B¢, ..s8,) =Sy +L3PTx, (3.7)

where f is the BLUP of [3}. under § (3, ... , 8;; v(x)) as obtainable from Gauss-Markoff theorem.
j

2 J’
3.1.1 Special Cases
Under model & (0, 1, v(x)),

Ty (0,15 v (0) = Ty + {(Sx yi /v @) (I /v ()1} 2y (3.8)

2
~ 2 xk
e(l. -2 =06"Cx)¥z% +623v(x
( s ) (& k) SV(xk) . ( k)

It follows, therefore, that if

* v(x,) is monotonically non-decreasing function of x,

* v(x) / x’ is monotonically non-increasing function of x,

the strategy ( p", T ) will have minimum average variance in the class of all strategies (p, T'), p € P

Te L _, the class of all linear m-unbiased predictors under &, where the sampling design p” is such that

p'(s) = 1(0) for s = 5" (otherwise) (3.10)
s" having the property

2 X, =max_g XX, (3.11)
where i "

S, ={s:v(s)=n}, (3.12)

Considering the particular case, v(x) = xgk and writing T (0, 1; xg) as T*g,
Ty =Xy + {Zag 3p) (T} / I,
A~ %k y
Ty =Zy+ {Zy) Exp} /2 =2

Ty =Zy+ {Zyexp) Exp} /v (S)-

X, (3.13)
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Example 3.2

Consider now prediction under multiple regression models as follows. Assume that apart from main
variable y we have (r + I) closely related auxiliary variables x (j =0, 1, ..., ) with known values
xkj‘v’k =1, ..., N: The variables y , ..., y, are assumed to have a joint distribution & such that

€W 1x) = Bevig + By o+ B
v, lx)= o'V, (3.14)
V517 =0,

where x, = (x,, x,,, ..., x,) By, B,s --. B,; and &’ (> 0) are unknown parameters, v, is a known function
of x,. If x,, = 1Vk, the model has an intercept term {3, Assuming without loss of generality that
s=(1, ..., n), we shall write

y=0,5),B=(B, - B

X100 X111 .- X1 X
— X X oo X - §
X= go '21 .2r [X J (3.15)
XNo XN1 o XN
— VS O
"=lo VJ’

X being a n X (r + 1) submatrix of X corresponding to &k € s; (XE defined similarly) V (V) being a
n X n((N — n) X (N — n)) submatrix of ¥ corresponding to k € s (k € §). The multiple regression model
(3.15) is, therefore,

e =XB,D(y)=0, (3.16)
where D(.) denoting model-dispersion matrix of (.). We shall denote -
Xj=§xkj,xjs =k2ﬁxkj,xjs=xjs/n ,

/’

X, = (X e X, )5 X = (g, oo )5
and x_, X, x_, X, similarly. The model (3.16) will be denoted as & (X, v).
For a given s, the BLUP of T is

7, (x,v) =Zy +x B (3.17)

where B: is the generalized least square predictor of j3,
| B =(x v X)X v v ) (3.18)
Hence (Royall, 1971) |
Trow) =[,+ (1, X)XV X)) "X, vy, (3.19)

where 1;= (1, .., 1)’

gx 1

M(p,T") = Ev(x ) + v(E)

=62 E [{x; (X, V.  X) 1 x;} +Tv] (3.20)
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3.2 Robustness Of Model-Dependent Optimal Strategies

The model-dependent optimal predictor (&) will, in general, be biased and not optimal under an alter-
native model &’. Suppose from practical considerations we assume that the model is & CN 8j; v(x)) and
use the predictor 7 (£) which is BLUE under &. The bias of this predictor under a different model &’ for a
particular sample s is

eg {7, -1} =B{1; (©).¢)
=By, . 5 T, 8y 58 ;5 v (X)), (3.21)
&’-bias of T (&) for a particular sampling design p is
Seg {1, ~T}p (9. (3.22)

To preserve the property of unbiasedness of 7(€) even when the true model is &’, we may choose the
sampling design in such a way that 7°(€) remains also unbiased under &’. With this end in view, Royall and
Herson (1973) introduced the concept of balanced sampling design.

Another way to deal with the situation may be as follows. Of all the predictors belonging to a subclass
7 (€) say, we may choose one 7° (€), which is least subject to bias even when the model is &’. Thus, for a
given s, we should use 7° (€) such that

BT ©),8) <IB(T, ), &)

VT () e t (&), the choice of subclass % (€) being made from other considerations, e.g. from the point of
view of mse, etc.

3.2.1 Bias of T,

We have
BT, & (B, .... 83 v(0) }
=58 H, () B ,
where

H,(j.s)=[Exf"8Zx, ~ZxpeExf] /Zx;¢ (3.23)

. _ (3.24)
=1, ,9)/Exp-8,

which is independent of the form of the variance function in &’. Note that Hg(l, 5)=0.

Definition 3.3 (Royall and Herson, 1973).'A sampling design p (L) is a balanced s.d. of order L (if it
exists) if p (s) = 1(0) for s = s, (L) (otherwise), where s, (L), called a balanced sample of order L is such
that '

o J — o/ -
X 0 =x %<L>’] =1, .., L
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where
0] .
= Z xk(h)/ n, Xs(h) — z xk(h)/ (N— n) (325)

If th%re are K such samples (3.25), p chooses each such sample with probability K.
It follows that the ratio predictor 7; =7 (0, 1; 1) which is optimal under the model £ (0, 1; x) remains

unbiased under alternative class of models & (5, .. v (x)), when used along with a balanced sampling

ety J’

design” .

In general, consider the bias of 7 (0, 1; v(x)) under & (3, .. V (x)), which is

tee J )

Toxf T v(xy)

£8 B [ s At (3.26)
28, B, [(Zxp) ( 3 2 v(x) ) —Zxy ]
Hence, if a sample s'(J) satisfies
Cxf ) /1Zx=Cx T v ) 1 Exp 1vx)) (3.27)
j=0,1,...,J,

the predictors 7 (0, 1; v (x)) remains unbiased under § (3, ..., 8, ; v (x)), on s'(J) for any V (x).

Samples s°(J) satisfying (3.27) may be called generalized balanced samples of order J (Mukhopadhyay,
1996). |

For v (x) = ¥, (3.27) reduces to

Y =X Ex) =0, (3.28)

Samples satisfying these conditionss have besen termsed ‘over-balanced samples’ s(J) by Scott et al
(1978).

The following theorem shows that 7 (0, 1; v (x)) becomes BLUP under & (3, ..., 8,; v (x)) for s = 5°(J)
when V (x) is of a particular form.

Theorem 3.1 (Scott, Brewer and Ho, 1978) For s =s'(J), 7°(0, 1; v (x)) is BLUP under & (3, ..., 3,;
v (x)) provided
V@ =vn) 2 8ax", (3.29)
where aj’s are arbitrary non-negative constants.

It is obvious that all types of balanced samples are rarely available in practice. Royall and Herson
(1973), Royall and Pfeffermann (1982) recommended simple random samples as approximately balanced
samples s,(J). Mukhopadhyay (1985a) showed that simple random sampling and pps Vx sampling are
asymptotically equivalent to balanced sampling designs 7 (J) for using the ratio predictor. Mukhopadhyay
(1985b ) suggested a post-sample predictor which remains almost unbiased under alternative polynomial
regression models. For further details on the robustness of the model-dependent optimal predictors the

reader may refer to Mukhopadhyay (1977, 1996), among others.
3.3 Projection Predictors

In (3.4) we have considered predlctmg Z Y, only, since the part 2 Ve of Y is completely known when the
data are given and found optimal strateg1es that minimize M ( p, ) However, in predicting the total of a
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finite population of the same type as the current survey population, one’s primary interest is in estimating
the superpopulation total y = Z W, Fora givens, a m-unblased predictor of T will, therefore, be

=27 Yo (3.30)
where
e(D=p,k=1,..,N. (33D
The predictors (3 30) are called projection predictors
Under € (5, ..., 6, ; v (x)), BLU-projection predictor of T'is

'@y 80 () =25 88 %, (332)
=10 1/
where [’3 is as defined in (3.7). Under § (X, v),
FX, ) =% B, =1"XB,

where x’O = (Xgp Xpp -++> X X, o ZXk , B, is given in (3.18).

(3.33)

4 Generalised Predictors Under Model & (X, v)
Sarndal (1980 b) considered different choices of ﬁ under & (X, v). Considering B* in (3.19) (dropping the
suffix ), we note that a predictor 8 of B is of the form
B=Zx)y'Zx (3.35).
where Z' is an X (r + 1) matrix of weight z, to be sultably chosen such that a predictor B of B has some
desirable properties. Zs' X _is of full rank. leferent choices of Z are:
(a) r! weighted. Z_and the corresponding B may be called r weighted if

n-'1.ec), (3.36)
1e. if
m-l1,=zA\, (3.37)

C (Z) denoting the column space of Z, A = (A, A, ..., A,)’, a vector of constants 7»}.. Here I1 = Diag
(r,k=1,...,N),IL = Diag (n, k € s).

-1
IfZS - HS Xs 1 1 1 1
B=(XTL X) XTI y=pB (I )=, (say) (3:38)

(b) BLU — weighted. Here Z_ = ¥,' X_ when
B=f"=B (") (say) (3-39)

(c) weighted by an arbitrary matrix Q. Here Z = QX where Q is an arbitrary N X N diagonal matrix

of weights and Q _is a submatrix of Q correspondmg to units k € s. Therefore,

B=(X0X) (X.0y)=BQ (say). (3.40)

For £ (X, v), Cassel, Sarndal and Wretman (1976), Sarndal (1980 b) suggested a generalised predictor
of T,
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Yk % RN
IR D)
;A , ;- X
= lnns ys+ (IX_ 151_[.9 XS‘)B’
-1 R
=Tor (V) =T 4 (say), (3.41)

where B*,- is the BLUP of ﬁj obtained from the jth element of B*j given in (3.18).
For arbitrary weights Q in 8 (Q), generalided regression estimator of T is

Ter (@ =2 y/m + 3B (O~ Taym =1y s + (Ui xpp@.  (B42)

Wright (1983) considered a ( p,Q,R) strategy for predicting T as a combination of sampling design p and
a predictor

7(Q.R) =Eryin -3x,B, 01 + 2,8, (3.43)

where R = Diag (r, k=1, ..., N), R = Diag (r,., k € s), r, being a suitable weight. For different choic-
es of O, R one gets different predictors. Some choices of O are, as before, ¥, IT , (VIT) " and of R are 0,
I, and IT . The choice R = 0 gives projection predictors of the type (3.30); R = m gives the class of gen-
eralised regression predictors considered by Cassel, et al (1976, 1977), Sarndal (1980 b).

We shall now address the problem of asymptotic unbiased estimation of design -variance of
Tor (HflV_l) under § (X, v). Consider a more general problem of estimation of A linear functions
F=(,F, .. F)=Cy, where F = C'y,C =(C,, .., CNq)’, Ca N X Q matrix ((qu)), qubeing
known constants. Consider the following estimates of F -

T,=CJI 6-3)+ Cy, (3.44)
where C'qs is the row vector (qu, ke s)andy = x'k B, with
B=BvTH=w v m'x) xX.v 'y, (3.45)

The estimator (3.44) is an extension of generalized regression estimator 7 GR (V_IH'I) of 7. Let

A

T=(T, .., T,): Then

1)

T, 0 -5)+Cy, (3.46)
where C_ is the part of C corresponding to k € 5. Now
P=G 'y, (3.47)

where
- C-ME X
- CIT ' x-Cx,
H o= xv'n'x,

Thus T =xg. Y /m, 8, being the (k, a) th component of G . The following two methods have been
suggested by Sarndal (1982) for estimating the dispersion matrix D (') = (covp(f’ o T )

(a) Taylor expansion method : An estimate of Covp( T e T ») 1s approximately the Yates-Grundy estima-
tor of covariance,

wg QQ\

(3.48)
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k<§es 2(m,/m7-1)(z, /n~z, /8)@E, /7 -z, /R), (3.49)
= v, (ab) (say,)
where
Zka - Cka ek’ ek - Yk a x,kBs' (350)
Writing
YG, (dy> dy) =X X (m,/ m,7,-1) (dy, Im = d, /) (dy, /T = d, ), (3.51)
as the YG-transformation of (4, , d,,), k € s, we have
v, (@b)=YG (z,,z,), (3.52)
(b) Model method. Here an approximate estimate of Covp(T - T ,) 1s
v, (ab)=YG (z,z,), (3.53)
where
Zl:a - gskaek' (354)

For further details on inferential problems in survey sampling the reader may refer to Mukhopadhyay
(1996, 1998, 2000).
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