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ABSTRACT 

In this work we study the theory of dehomogenization at the level of filtered sheaves using the mi-

em-structure sheaves. For the sheaf of quantum section the results are still true. 
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0. INTRODUCTION 

In projective algebraic geometry homogeneous 

coordinate rings appear together with a suitable 

dehomogenization. For example, if V (I) is a projective 

variety determined by a homogenous ideal I of the 

polynomial ring k [x
0

, .•.• xn I and R is the graded coordinate 

ring k[x
0

, ... ,xnl/I then RjO-x
0

lR is isomorphic to the 

coordinte ring of the open affine subvariety comlementary 

to the hyper plane at infinity in V (1). In a similar way 

every determinantal ring is a dehomogenization of a 

Schubert cycle (being the graded coordinate ring of a 

Schubert variety) and this dehomogenization principle is 

the basis for the study of determinantal rings. We now 

extend this to sheaf level. We study the theory of 

dehomogenization at the level of filtered sheaves using the 

micro-structure sheaf ~ (see [1], [3], [131]) in this 

studying. 

As in section 2 we prove that ify is a dehomogenization 

of its associated Rees sheaf Q~. For the sheaf of quantum 

sections (see [1], [131]) (Q~)q=~ 0(Q~)=" Q~ the result is 

still true.In section 3 we do the opposite, i. e. we show that 

by taking a suitable dehomogenization a graded sheaf may 

be made into Rees sheaf associated to Zariski filtered sheaf. 

Again, the opposite is true for the sheaf of quantum 

sections. 

So in this way, one also gets that Q~ behaves as well 

as R with respect to this dehomogenization theory. 

1. PRELIMINARIES 

In fact we use the same preliminaries of [1] and let us 

recall them again. 

All rings considered are associative rings with unit. 

Modules are left modules and ideals are two-sided ideals 

unless otherwise stated. A filtration FR on a ring R is given 

by an ascending chain ... c F R c R c F R c ... of n-1 n 
additive SUbgroupS F nR, neZ, Satisfying: 

leF R, F RF R c F R for n, 
o n m n+m 

me1 U F R = R. 
' ne1 n 

A filtered R-module is an R-module M with filtration 
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FM given by an ascending chain of additive subgroups ... 

c F M c F M c .... satisfying: F R FmM c Fn+mM 
n-1 n n 

for n me1 U F M = M. We write R-filt for the 
' ' ne:Z n 

(non-aoelian) category of filtered modules with degree 

preserving morphisms. 

To the filtration FR there corresponds the associated 

graded ring G(R)=<t> _F R/F R and similarly an 
neT n n-1 

associated graded module. G(Ml = ene7l.F nMjF n-lMeG(Rl-gr 

is associated to FM. 

If xeF M-F H for some 'ne7I. then we say that x has 
n n-1. 

filtrationdegree n and the principle symbol map cr is 

defined by putting cr (x) = x modulo F n-
1 

(M) when x has 

filtration degree n and CF ( x) =0 when xeF nM for all neZ. 

A filtration FM is separated when flne7I.F nM = 0; for a 

separated filtration o-(xl = o if and only if x = 0 holds. 

There is another graded ring that may be associated to FR, 

namely <t> 7L F R. We may identify this so called Rees 
ne n 

ring of F R to the subring 

Lne7I.F n R }(l = R in R[X,· X-
1

] 

where X is a central variable over R; it is homogeneous of 

degree one. To an MeR-fil t we may correspond a graded 

R-module M = Lue:zFn M xn c M[X, x-1
]. 

We denote by :1 X the full subcategory in R-gr 

consisting of the graded R-modules that are also X-torsion 

free. 

A filtration FM is said to be a good filtration if for 
v 

every ne1 F M=" F d R. m for certain ' n L.i=o n- i 

m , ••• , m eM and some d , .. , ~ e7l.. A filtration FR is 
0 v 0 v 

faithful when all good filtrations are automatically 

separated. 

Amongst the filtered morphisms there are some that 

behave better with respect to the functorG:R-fiit-)G(Rl-gr 

as far as exactness properties are being considered. A 

filtered morphism f: M --7 N is said to be strict when 

f F M = f M n F N, neZ. 
n n 

For a filtered inclusion i: M --7 N strictness of i just states 

that M is considered with the filtration induced by FN on 
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M. Note however that a good filtration FN need not induce 

a good filtration on a submodule M. Recall from [5], the 

following. 

1.1. Lemma. With conventions and notation as 
above: 

a. R/xR ~ G(R), R/C1-X)R ~ R, fix~ R[X, x-1 1. 

b. MjXM ~ G(M), M/C1-XlM ~ M, Mx ~ M[X,X-1 ] 

where C-) x denotes the (graded) localization at the 

multiplicative central set { 1, X, X
2

, ..• } • 

C. The functor-: R-filt -7 R-gr defines an equivalence of 

categories between R-filt and ~ . 

1.2. Lemma. With notation as b~fore: 

a. FM is good if and only if M is finitely generated. 

b. A filtered morphism f: M ~ N is strict exactly then when 

Coker fe!V'Xi. e.when f is a morphism in F x· A strict 

sequence in R- filt transforms to an exact (graded) 

sequence in F X. 

c. FR is faithful if and only if F RcJ(F R), 
-1 0 

Jacobson radical of F 
0
R, if and only if 

Jacobson graded radical of R 

, the 

, the 

d. FR has the property that good filtration induce good 

filtrations on submodules if iUs left Noetherian. 

We say that FR is a Zariskian filtration when 

XeJg(R) and R is Noetherian (sinilar for the left or right 

notions). Unless other-wise stated we always consider a 

Zariskian filtration FR. Let S be a multiplicative set in R , 

1eS, OES, such that cr (S) is a multiplicative set in G (R), 

lecr(S), 9~cr(S), satisfying the left Ore conditions (e. g. we 

may take 

S =·{reR, ~(r)e~(S), r ~ 0}). 

For any MeR-f i 1 t we define the micro-localization 

ofM at cr(S) by cr(S) by 

where 

S = {~eR, ~ = sXm for seS with filtration degree m}, 

S(n) = {~ mod X~ for ~eS}, cf. [5]. 

1.3. Theorem. WithThe following properties hold: 
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1. The'R-module Qf..I(M) .is X-torsion free. s ' 
2. FQ~(M) is separated and complete. 

3. G(Q~(Ml) "'Q~(s)(G(M)) = cr(S)-
1
G(M); G(Q~(R)) = cr(S)-1G(Rl. 

4. The right R· - module Q~ (R) is flat. 
s 

5. Q~(R) is the microlocalization of Rat cr (S) in the 

sence of [5], i. e. it satisfies the universal property 

mentiond in Loc. cit. 

We need some basic theory of sheaves and coherent 

sheaves but we refer to the classical paper [10] or to the 

books [6], [11]. In the sequel we assume that FR is a 

Zariskian 'filtration such that G (R) is a commutative 

domain, this situation is general enough in the sense that .it 

allows application of the results to most of the important 

examples: enveloping algebras of Lie algebras, Weyl 

algebras, any rings of differential operators as well as the 

classical commutative Zariski rings that show up in 

singularity theory. 

On the topological space Y =Proj G {R) with its Zariski 

topology having theY (I) = {PeProj G (R), ~1}, I varies 

over the principle graded ideals of G (R), for a basis, we 

may define two structure-sheaves. First we may associative 

to ~1 (f), feG (R), the graded ringQ~(R){G(R)) = G(R) 

[ f ] and we obtain the fraded structuresheaf Oy = 

Proj G(R). In a similar way we may associate to each 

graded G (R)-odule N the graded and the usual structure 

sheaf. Q~ and QN resp. over Y. Write 23 for the basis of the 

Zariski topology on Y consisting of the open sets Y (f), 

fe G (R). When G (R) is not positively graded then consider 

Y=SpecgG(R), the graded prime spectrum. We may define 

the Zariski topology by Y(fl={PeSpecgG(R), f~P} and we 

may define Q~ and Qy as before. Up to the final section 

the results we establish are insensitive to the definition of Y 

as Proj G (R) or as SpecgG(R). Moreover, now as in [2], it 

is possible that Proj (G(R)) = Specg(G(R)). So unless 

otherwise specified Y is either ProjG (R) or SpecgG(R); it 

is clear in the positively graded case SpecgG(R) is a 

somewhat strange topological space so that in this case we 

will automativally assume Y = Proj G (R), [4]. 

Associating to an open set Y ( f ) e13 the 
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micro-loalization Q~ ( R) , resp. Qi ( R) , we obtain 
~J.l f 

sheaves Oy• resp. Q~. having as the Completed stalks 

at PeY the rings Q~(R), resp. Q~(R) see [13]. Note that 

0~ is a sheaf of Zariski rings. 

Repacing R by any filtered R-module M in the above 

leads to the construction of an 0~ J.l-Module MJ.l over the 
-Y -Y 

ringed space Q~ and also an Q~-Module ~~- over the 

ringed space o~. where we have written ~ and ~ 
for the sheaves defined by the presheaves constructed 

(note: in case M is such that G (M) is absolutely torsionfree 

then the presheaves of microlocalization are sheaves). The 

sheaves of quantum section for G (R), resp. G (M), are 

obtained by looking at the parts of filtration degree zero: 

F oU~· resp. F &· These may be viewed as parts of 

degree zero in the graded sense for the corresponding Rees 

sheaves F a-U~ a! (Q~)0 • F ~ a! {~)0 • We refere to [13] 

for some basic propereties and definition. 

In [5], [8] and [6], [12], the use of graded techniques in 
~ 

R:-gr allowed to obtain the desired results for filtered 

objects. Here we plan to use the same strategy when 

studying coherent sheaves of modules and their relations 

with structure sheaves of modules of sections, but we have 

to modify the technique somewhat when dealing with 

micro-localization and micro-structuresheaves because the 

elements of sections and stalks are not fractions. By a 

theorem from [5] we know that Q~(R)=(s;1R)A where 

Sr={reR, o-(r)e{l,f, ... }} and A stands for completion of 

the ring of fractions with respect to the localized filtration. 

Therefore it makes sense to use ~ and the "slicing-up 

of R" "in terms of R/XnR for every nerN in order to 

reuce all problems to the graded case and consideration of 

homogeous fractions Q~ (R/X~) for every nerN. 
f 

When looking at sheaves of filtered and modules over 

some sheaf of filtered rings it may happen that the 

restriction morphisms in the sheaf change the filtration 

degree of some elements even if these morphisms are 

filtered morphisms, in other words it may not be possible to 

define a "principle symbole" globally on the sheaf of 

filtered modules even though the sheaf of associated graded 

modules is perfectly well-defined. This technicality is 
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avoided if we define a filtered sheaf M of modules over a 

filtered sheaf of rings B by assuming that we have 

subsheaves of additive groups '!f nB' '!f nM for neZ 

satisfying the expected conditions. Of course Q~ is such a 

filtered sheaf of rings because the restriction morphisms on 

principle Zariski open sets are strict filtered morphisms and 

under assumptions they are even strict filtered 

monomorphisms. A filtered sheaf morphism between 

filtered sheaves, f: M ~ !':!. say, is then one such that for 

all ne7l, f('!f nM) c '!f nN and we say that f is a strict 

sheaf morphism if for all stalks the induced stalk-mophism 

is strict. For coherent and filtered sheaves of modules we 

now introduce the equivalent of a good filtration and 

fillows. If M is a coherent filtered sheaf of (filtered) B­
modules then we say that H is coherently filtered if for 

every open U we have an exact sequence of sheaf 

morphisms 

for some n, meiN, where f u and gv are now 

supposed to be a strict sheaf morphism. 

When M is a filtered sheaf of Q~-modules then we 

-p. 
may define a graded sheaf Qy-modules by puttlng 

M= 8 nel :ltn M where for all M(U) = e (:It M)(U) - nel n -

enel Fn(M(U)) and M = e l F M for all - -y ne n -y 

Zarlskl open sets UeY and every yeY. 

We say that B. is the (graded) Rees sheaf of t1 and the 

sheaf determined bye 71.['!1 M (U )j':J M (U) ]=G (M) nE n - n-1- -

is called the associated graded sheaf of ~(R) -modules .. It 

is not a too difficult excercise to verify that the structure 

sheaf My constructed before is in fact a coherently 

filtered sheaf of complete 0~ -modules. 

For a general filtered sheaf o~-modules M we still 

have: H/xM ~ G(!:!) and B/0-2:0M ~ M 

as sheaves where ~ is the "constant" global section. 

Again it makes sense to say that M is X-torsion- free and 

as in [ 1]. The coherence of B. implies the coherence of G 

and the coherence of M· Under some conditions, cf. P. 

Shapira's book [11], the coherence of G(!1) alone will 
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imply the coherence of M, but we do not need this here. 

We need too some basic theory of dehomogenizations 

but we refer to [7], and [9]. 

2. GRADED SHEAVES FROM FILTERED 
SHEAVES AND DEHOMOGENIZATION 

There are two associated functors from the category of 

coherently filtered sheavves oe-modules to the 

category of graded sheaves G(0~)-modules and the 
~ll 

category of graded sheaves Oy -modules respectively. 

That is, if Mye.Q~-fllt is coherently filtered that 

HyeQ~-Gr and G(My)eG(0~)-Gr. 

As in [8] denote by X the global central regular section 

of Oily determined by XQ~CRJ for each Y (f) E/3 • . In 
- f ll 0 

fact that X is the image of the unit section 1e~ 
1 

Oy m 

(QJ!) . ~LeQ-Jt-Gr is said to be X- torsionfrelocally. -Y 1 --y -Y -

2.1. Lemma. For every MyeQ~-fil t that is coherently 

filtered. It follows that My is ~-torsionfree. 

Proof. From tha above definition and [12], [13]. 

These My.. with MyeQ~-filt such that My is coherently 

filtered, form a full subcategory of Q~ -Gr denoted by 

"s~· 
~Jl 

Denote by ly = z; Q~ the sheaf of graded ideals in 0 y, 

i. e., for every Y (f) e(3: lyCY (f)) = X Q~ ( R l which is 
0 0 -ll - -ll - f a graded tdeal m Qy(Y(fl) - Q/Rl · 

2.2. Theorm. With notation as above: 

oll;xo11 ~ G ( 011 ) M11 jxM/-L ~ G (!_·tv) as graded a. -Y --Y -Y ' -Y --Y 
sheaves. 

b. o~;o-xliS~ ~ o~. H~;o-xlH~ ~ ~~ 
as filtedered sheaves. Moreover, 

1-L ~1-L ~1-L 

Bv/Cl-Xl~y ~ ~ (~Y)n where the map in the 

inductive system of she~ves of groups are given by the 

multiplication of X and there are isomorphisms of sheaves 

-~ -~ )-~ ~)/(1 X)M~ neZ ofadditivegroups ~n!:!;; 10 (C!:!;;ln + 0-X !:!v 10 !:!Y --- -Y' · 

Proof. a. For each Y(fle(3 we can see: 

where the final equality follows from theorem 3.8 in [13]. 

On the other hand G(Q/-L)Y(f) = Q/-Lf(G(R)) .. Hence 
-Y 

Qll~Q/-L ~ G(01-L), foreach Y(f)eJ3, -Y'~-Y -Y 
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so 0~/XO~ ~G ( 0~) .. Similarly we can arrive at 

~~ ~G <!:!~). . It is observed that they are sheaf 

isomorphisms because there are isomorphisms on the 

stalks. 
~,.,. ~1-L ~ ,.,. 

b. As in a., we can prove that Oy/ ( 1-X) Oy = Oy and 

f1,.,. ;o-loH~~ ~~--v =--y -~t 
But for the sheaf ~Lim (!:!YJ n we see, for 

n 
Y(f)e/3: 

( Lim (M~l ) Y(f) = Lim ((M~l (Y(f) l) = ojCMl = !:!~(Y(fl) t-- -_-y n f-- -_y n 

So ~ (~)n E! ~ as filtered sheaves over Q~· 
n ~ll · ~ll 

We have seen that !:!y/ (1-X) !:!y is a filtered 

sheaf such that for every neZ we get 

ccH~)n + (1 - X)~)/(1-X)~ 
is a sheaf of groups defined on Y by: 

-'"] [( (M~"J + (1 - XlM'"J/<1-Xl!:!y (Y(fl) -Y n - -Y 

= (ca~CMl) + (1-XlQ~(Ml)/o-xJQ~(Ml 
f n f f 

= [(<ajCMlrL + 0-Xl(QjCMlr]jo-xJ(QjCMlr 

10 Fn(Qj(Rl) = (:1n !:!~)(Y(f)). 

This is for each y ( f) e/3 , , so 

:¥' Mil E! ((Mil) + (1 _ X)Mily)/(1-l;)Mily• nel 
n -Y -Y n - - - -

2.3. Theorem. ForWith hypothesis as above: 

a. The functor ) ~ defined above determines an 

equivalence of categories coherently filtered 0~ 
-torsionfree 0~ -modules in '!f sX' . In particular, every 

coherent X- torsionfree oJ..l-module My is of the form - -Y 
for some ~e.Q~-filt. which is coming from a MeR-filt 

with good filtration FM. 

b. The localization of 0~ at the multiplicative closed set 
J.l -1 

of global sections {1, ~. l;2 , ••• } equals to Oy[X, X ] 
denoted by (Q~)z;_. Also(~)~ = ~[~. z;-11 · 

Proof. a. It follows from Lemma 2.1. above and Theorem 

2.6 in [1]. 

b. To prove these statements we need some ideas about 

localization of sheaf of modules, but for this we refer to 

[14]. Now the statements are local hence for each Y (f) 

we see that 

.Q~[X, ~- 1 ](Y(f)) = Q~(Y(fl)[~. ~-1 ] = Qi(R)[~. ~-1 ] = 

(cQiCRJft = (.5~cv<o>)x = c.Q~>lv<o). 

Hence (Q~)~ 10 .Q~[~. ~- 1 1 for each Y(fle/3. so 

-~ - ~ -1 C.Qyl~ = Qy[~. ~ J. 

Similarly, we may parove t at =--y h (Mr:_~)~ 10 M_~y[_X, _X- 1
]. 
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2.4. Remark. The foregoing Theorems 2.2 and 2.3. are, 

in fact, the basis for many results on filtered sheaf theory 

(in particular, on Zarishian filtered sheaf theory). From 

both it is clear that 0~ is a dehomogenization of its 

associated graded Rees sheaf 0~. 
Given the micro-structure sheaf Q~ and !:!~EQ~-filt 

that is coherently filtered. Hece by theorem 2.2. we see that 

ofl "" ofl/(1-;~oofl. Mf..l "" t:~fl /(1-~)Mf..l -Y -Y -Y -Y -Y -Y 

are filtered sheaves defined on Y with respect to the 

filtrations 

~n(Q~/(1- ~)Q~) = (CQ~ln + (1 - ~lQ~)/(1- ~lQ~. 

~ n<E~/(1-~)E~)=< cE~ln + (1-£oE~)fc1-~lE~ 
respectively. There are sheaf isomorphisms 

~ (Q~f..l/(1 - X)Q~f..l) = '!f Of..L ~ (Mf..l/(1 - X)Mf..l)=~ Mil. · n -Y - - -Y n-Y' n -Y - - -Y n-Y 

Hence at n = 0 we get that: 

((Of..ly) + (1 - X)Qf..l)/(1-X)Qf..l""~ 0f..l""(0~f..l) 
- o - - -Y - - -Y n-Y -Y o' 

((Mf..l) + (1 - X) Mf..l)/(1 - X)Mf..l "" ~ Mf..l ~ (Mf..l) . -Y o - - -Y - - -Y n -Y -Y o 

This implies that the quantum of Q.~ is a 

dehomogenization of its shifted associated quantum Rees 

sheaf. 

3. FILTERED SHEAVES FROM GRADED 
SHEAVES AND DEHOMOGENIZATION 

In this section we do the opposite, i. e. we show that by 

taking a suitable dehomogenization many graded sheaves 

of rings may be made into Rees sheaves of rings associated 

to Zariski filtered sheaves of rings. So in this way one also 

gets information for a given graded sheaf from its 

associated filtered sheaf. 

Let H = e H__ b -y nez---y, n e any Z-graded sheaf of 

rings defined on a topological space Y. Associate to Y a 

base of open subsets !3. Let X be a homogeneous global 

section of degree 1 in fly· This X determines for each Uel3 

a global section ~lu = ~(Ul whereas 

H __ (U) = e e~ ~- (U) = e ~(Hy(U)) . ---y n 11.. """'{, n ne~~.. - n 

For every homogeneous section hn of fly, n over U 

and t>O we have h = Xth + (1-Xt)h n n n· 
The sheaf !!.y = Ry/C1-2.o!!y• Where (1-~l!!y is a 

sheaf of ideals in Hy defined on Y, may be made into a 

filtered sheaf of rings by endowing it with the filtration: 

~nQY=(HY,n+(1-~)liy)/C1-~)Hy• nel. 

We can see that the filtration ~ Qy on Qy defined 

above is such that U ~ Dy and 1 e~ D . nel n - - o-Y 

3.1. Lemma. Witth notations as above, if ~ is a regular 

homogeneous global section in liy then 

a. C 1-~ )Hy n Hy n == o : the zero sheaf for all ne?Z. . 
b. If ~ is also a normal global section (~ Hy = Hy ~) 
then ~ is a central global section if and only if and only if 

(1 - ~l !!y is a sheaf of ideals in Hy· 

Proof. a. Clear. 

b. To prove that (1 - !0 fly is a sheaf of ideals in !!y• 

let Ue{3, (1 - Xlfly(U) = (1-X)(!!yCUl) 

whichisanidealin fly(U). SirnilarlyCHyCl- ~))(U) 

= liy(U)(l- X)=(1-X)H (U)=((l-X)H )(U) -y -- -y , 
since ~y ( U) is regular homogeneous normal central 

10 

in Hy ( U) . But to prove that X is regular homogeneous 

normal central in fly ( U) . But to prove that X is central it 

will be sufficient to be central over U, Ue{3. So let us 

consider the sheaf morphism fly L fly/<1-Xlliy• 

henceforUe{3wehave ~lu = ~ (U)' <{>(U): 

fly(U) ---7 flyCUl/(1 - X)!!y(U)~y 
Now fly(U) is a graded ring and ~y(U) is normal. 

Let us assume that X is not central this implies that there is 

a sefly(U), , X s~s X i.e. (s-Xs)~(s-sX) 

and have the same image under ¢> (U) . This is 

contradiction, therefore K is central for each Uel3. 

Hence ~ is central. 

Let !!y==enel.HY, n be a graded sheaf on Y. Define 

J,8 C!!yl. graded sheaf of ideals in tly• such that 

for Uel3: J.g(!!y(U)), the graded Jacobson radical sheaf 

of Hy· Here we have to associate a sheaf J.g(Ry) n !!y,o 

which be defined by for each Uel3: 

(J.g(fiy) n Hv,o)(U) = J.g{!!y(U)) n (!!y(U))o 

3.2. Theorem. Let fly be a graded sheaf of graded rings 

and X a regular central homogeneous blobal section of 

degree 1 in fly, with notations as above then 

a. ~Y e !!y as graded sheaf on Y. 
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b. G(J2y) e !!y/X !!y as graded sheaf. 

Proof. a. Since 
!:iy n+(1-Xl!:iy 

D = 0 (D ) "' 0 'j D = 0 
-y neil: -y n · neiN n -y neiN (1-Xl!:i 

and !!y == G:> ne?l !!y, n · . For each n one may define a 

sheaf isomorphism of sheaves of groups: 

¢n: C!!v,n+(l- .!O!!y)/Cl -20!!y~ !!v,n as 

follows: let Ue{3 be a basic open subset of Y, we have the 

group homomrphism 

¢n(U)': !!Y,n(U) + (1- X)!!y(U)~!!Y,n(U), 

defined by h n + ( 1 - X ) !!y ( U ) 1-----7 h n, 

which is surjective with kernel 

ker ¢ (U)' ={h + (1- XlHy(U):h ""0}::(1 - Xl!:iy(U). n n - n 

is a group isomorphism. Hence ¢ n is an isomorphism for 

each Ue{3, so ¢ n is a sheaf isomorphism. Combine all 

¢ n to obtain the required sheaf isomorphism. This 

proves !2y == !!y as graded sheaves defined on Y. 

b. By definition 

and 

(!:iy n + (1-~l!:iy)/(1-~l!!y 

G(~yl = 
0

neiN (!:iv:n- 1 +(1-~l!:iy)/<1-~l!:iy 
= 0 [mv,n + <1-Xl!:iy)/(!:iv,n-1 + <1-Xl!:ivl] 

H _ lv H e 0 (H /X H ) = 0 [(H + X H )/X H ] ~-yt £:>. -y neiN -y - -y n neiN -y, n - -y -y 

For each n, one may define a sheaf isomorphism of sheaves 

of additive groups; 

!!y n + (1-Xl!!y !!y n + ~ !!y 

q,n: !!y: n-1 +(1-!0!!y --7 • ~ !!y 

as follows, for each UE/3 define 

by 

hn + !!y,n-1 (U) + (1- Xl!!y(U) ~ hn + X!!y(U) 

From; since for every h eHy 
1 

c"u) , we have n-1 - ,n-
hn-1-(1-Xlhn-1 =Xhn-1 it follows that q,n (U) is well defined. 

Clearly, ¢ (U) is a surjective map. Moreover, if 
n 
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if heX !!y(U) then hn X hn-t' hn-t e!!Y, n-t (U) 

hence 

hn = X hn 1 = h - (1-X) h eHY (U) + (1-X)H (U) - n-1 n-1 - , n-1 -y 

then, ¢ (U) 
n 

is injective and this shows that ¢ ( U) is 
n 

a group isomorphism. So ¢ is a group isomorphism for 
n 

each Ue{3 then ¢n is a sheaf isomorphism. We shall 

obtain the required sheaf isomorphism if we combine all 
¢. 

n 

3.3. Proposition. Consider 

theorem 3.2. then Xe1g C!!y) 

!__
1 
!2y c 1 ( '!F 

0
!2y) where 

the same hypothesis in 

if and only if 

1 ( ':} 
0
J2y) denotes 

the Jacobson radical sheaf of ideals in 

Proof. The statement is local so, let 

subset of Y, we have to show that 

be a basic open 

X1 0 e1g(!!y)(U) if and only if 

'!F_t!2Y(U) c (1('!Fo!2y))(U). 

Now let ~1 0elg<!!yl (Ul = lgO:!yWl), !!y(Ul 

graded ring it follows that 

X!!y,_1 (U) c lgO:!y(Ul) n !:iy, 
0

(U) .i.e. 1-Xh_
1 

isinvertiblein !!y, 0 (U) forevery h_
1
e!!y,_

1
(U), but. 

then it fillows from h = Xh. + (1-X)h h eH (Ul 
-1 -1 -1. -1 -y. -1 • 

that C!!y, _1 (U)+(l-X)!!yWJ)/0-Xl!!y (U)cJ((!!Y. 
0

(U)+ 

(1-Xl!:iyWl)j(l-Xl!!y(U)]. So 'J_1~y(Ul c {1('J
0
!2yl)(U) 

for each Ue/3. Hence 'J_1!2y c l(':f
0
!2y) as sheaves of 

groups. Conversely, since for each Ue/3 we have 

!!y,n(U) n (1-~l!!y(UJ = Q, for every n it follows that 

~luelg<!!yl(U) = lg(!!y(U)). Hence Xelg<!!yl· 

3.4. Corollary. With notation and conventions as 

above the localization of !!y = G:> ne?l!!Y, n at the 
2 

Ore sheaf set {1, X. X , . · · } exists, it is denoted 

by (!!Y)X, which is a graded sheaf of rings defined on 

Y such that there is a commutative diagram of sheaf 

morphism 
!!y ~ C!!y)x 

l l 
!!yl (1-XJ!!y ~ !2y 

Proof. One can define <Hy )X as follows: for each Ue{3, 

Wy)x<Ul=Wy<ul)x· where X=XH (Ul • the localization of 
- - -y 

the graded ring !!y ( U) at the Ore set {1. ~, X2
, .•. } . since 
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O:!y ( U) )X is a graded ring hence O:!y )X is a graded 

sheaf on Y such that 
U!y)X = 0 neiN( (!!ylX)n; ( (!!YlX)n (U) = ( (fly(U))X)n' nel. 

For each Ue[3 one may define a homomorphism of 

rings: (!!Y)X(U) ~ Qy(Ul ; XJ h f---7 h + (1-Xl Hy(Ul 

where heHY,n-j(U), jEl 

and this define a sheaf morphism CHy )X~ Hy/ ( 1-X) Hy · 

3.5. Example. Let Ry be any 71..- graded sheaf of 

graded rings defined on Y. Then Hy [ T] is a graded 

sheaf; for each Ue[3: Hy[Il (U) = Hy(U) [T] and 

!!y[Il/(1-XlHy[I] is a filtered sheaf(i. e., sheaf of 

filtered rings), has an associated graded sheaf 

!!y [!]/I Hy [!] ~ Hy as graded sheaves and a Rees 

graded sheaf isomophic to Hy [!] as graded sheaves. 

3.6. Remark. Todo the opposite of the result concerning 

the quantum case, let !!y be any coherent graded sheaf 

defined on Y. Hence 

where may be made as above 

into a filtered sheaf by 

~nQY = ((!!y)n + (1-~l!!y)/(1-Xl!!y-

But from (*) we can conclude the required result. So the 

theory dehomogenization can be applied to the quantum 

level. 

A filtered sheaf Oy defined on Y, that has a base J3 as 

above, is said to be a Zariski filtered sheaf on Y if its 

associated Rees sheaf Oy is a Noetherian graded sheaf on 

Y and <j Oy c .J(<:f Oy) as sheaves on Y. 
-1- o-= 

Now we are ready to prove the final result ofthis note thatQy 

mentioned above may be made into a Zariski filtered sheaf 

deffined on Y. 

3. 7. Corollary. With notation and considerations as 

before, if ~e.J.g(!:!y)and Hy is a Noetherian graded sheaf on Y 

then :Qy will be Zariski filtered on Y. 

Proof. From Theorem 3.2. we have seen that RyE!!!y· hence 

Ily is Noetherian graded on Y. From Proposition 3.3. we 

have seen that xe.J.gO:!y) is equivalent to 

?! -t:QY c .J.(<:f o:QY) 

follows. 

as sheaves on Y, hence the result 

3.8. Final remark. This is an important 

dehomQgenization theory. For more cases and results we 

may continue to find applications. We shall do this in the 

near future. 
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