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ABSTRACT 

It is shown that a KP class of partial differential equations possesses an infinite number of conservation laws. In 
addition, exact and explicit solitary wave solutions are constructed for the KP class of equations, which has 
been obtained recently in many physical systems. 

I. INTRODUCTION 

Consider a KP class of partial differential equations in the 
form: 

coefficients and appears in many physical systems [1,4]. In [2] 
a set of Backlund transformations were determined by 
applying a singular-point analysis for (1.2). Lin and Chen [5] 
studied the KP equations 

or 

where A and C are arbitrary functions of y and t, 

I 3 
-- l -

F=JAC 2dy and G=-JC 2C 1dy 
2 

(l.l) 

(1.2) 

Equations (1.2) can be considered as a generalization of 
the KP equation [3] with· additional terrris and variable 
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(1.3) 

(1.4) 

and showed that these equations possess an infinite number 
of conservation laws in the form 

(1.5) 

where T, the conserved density, and -X and -Y, the fluxes, 
are polynomials in u and its derivatives with respect to x and 
y. 

The first three of the conserved densities have the forms : 
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T1 = (Ij2)u, 

T2 = (i/2)(ux- ba;1uy), 

T3 =(1/8)(-uxx +2buy -b2a;2uyy -u2 ), (1.6) 

where b = - i/ J3 in the case of ( 1.3) and b = -1/ J3 in the 

case of (1.4). 

In this paper, we show that (1.2) possesses an infinite 
number of conservation laws in the form (1.5). In addition to 
this, we construct the solitary wave solutions for (1.2). In 
section II we derive the first three conservation laws of (1.2). In 
section III we prove that there are an infinite number of 
conservation laws for (1.2). Generating functions are given. 
Finally, in section IV, solitary wave solutions for (1.2) are 
constructed. 

II. DERIVATION OF EXPLICIT CONSERVATION LAWS 

In this section we derive some conservation laws to show 
the method for generating them explicitly. Even though we can 
give an algorithm for deriving the conserved densities and 
corresponding fluxes, we will see below that difficulties arise in 
attempting to use this algorithm for obtaining the conserved 
densities and corresponding fluxes in the general case. 

For definiteness, throughout the remainder of this paper we 
are considering the KP class of equations ( 1.2). 

Clearly ( 1.2) is in conservation form with 

. I 2 ,_, "-' T = u , X= (I 2)u + uxx +ox (Au- Box uy + Duy) + Eu· and (2.1) 

Y=Ca-1u =0 
X y 

multiplying (1.2) by u yields a second conservation laws 

(2.2) 

to find a third conservation laws, multiply (1.2) by u2 giving : 

2 3 2 A 3 2"-! 2"-1 u u1 +u ux+u Uxxx+ u +Bu ox Uy+Cu ox Uyy 
(2.3) 

and adding (2.3) to -2ux (1.1) we obtain: 

2 3 2 3 • 2,-1 2,-1 2 2 
u Ut+u Ux+U llxxx+Au +Bu Ux Uy+Cu ox Uyy+Du Uy+Eu Ux 

-2u, (u" + u~ + uu,, + u xxxx +Au, +Buy + Cu yy + Duxy + Eu,,) = 0 

which can be rewritten as : 

(2.4) 
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which is also a conservation law. Since the algorithm for 
generating . conservation laws developed in this section does 
not easily generalize, we seek a different method for obtaining 
them. 

III. EXISTENCE OF AN INFINITE NUMBER OF 
CONSERVATION LAWS 

In this section, we generalize the results in [5,6] to prove 
that there exists an infinite number of conservation laws in the 
form (1.5) of (1.2). We present a nonlinear transformation 
relating solutions of (1.2) and a similar modified nonlinear 
equation. For this purpose, we need a lemma. 

Lemma 1. The KP class of equations (1.2) is satisfied by u 

(3.1) 

if w satisfies the equation : 

I 

w 1 +wxxx -6(w+e
2

w
2

)wx -2.J3ec2wxa~1 wy -2J3£Fwwx 

where e is any real parameter. 

Proof: Substitution from (3.1) into (1.2) yields : 

Ut + UUx + Uxxx +Au+ B<l~ 1 uy + co;1uyy + Duy + Eux = 
I 

(-6-6Edx -12e2w-2~ec2o~1<ly -2~EF)(w1 +Wxxx -6(w+t2w2 )wx 
I 

-2../3ec2wx<l~1 wy -2~eFwwx +Aw+Bo;1wy +Co;1wyy +Dwy +Ewx) 

Hence u, given by (3 .1 ), is a solution of ( 1.2) if w is a 
solution of (3.2) but of course not necessarily vice versa, and 
we complete the proof. 

It is clear that if we set e = 0 then (3.1) reduces to u = -6w 
and, correspondingly, (3.2) becomes (1,2). Note that (3.2), for 
all E , has a conservation law of the form : 

I 

w1 + (wxx- 3w2 -2e2w 3 - 2J3ec2wxa;1wy- 2J3eFw2 

I 

_!.fjc2cya;1w~Aa;1w- Ba;2wy + na;1wy + Ew)x 
2 

I 

+(ca;1wy +J3ec2w2)y = o 

and so: 

J J wdxdy =constant 
-oo -oo • 

(3.1) 
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In order to generate conservation laws for (1.2), we take 

advantage of the arbitrary parameter £. Since w ~-.!. u as 
6 

£~Owe choose to represent w by an asymptotic expansion in 

E: 

00 

w(x,y,t,£)- LEnwn(x,y,t) as£~ 0 
n=O 

(3.4) 

if we treat the constant in (3.3) similarly as a power series in 
E , then by writing w as its asymptotiC expansion, we obtain : 

J J w n dx dy =constant (3.5) 

for each n = 0, 1, 2, ... 

Finally, we use the asymptotic expansion, (3.4), in (3.1), 

and equate coefficients of En for each n = 0, 1, 2, ... thus 
from: 

(3.6) 

we see that 

1 
w0 =--u 

6 
(3.7) 

I I I 
1 -- - --

wl=-(3 2C2a-1u +3 2Fu+u) 6 X y X (3.8) 

I I 

w3 = _!_(2uu, + 3u= + 3Bd~1 uv + 3Cd~1 u"' +2(3 -2 )C2()~3 u,." 18 . .. .. 
I I I 3 I I 

+ 3 2 c2 Bd~3un. + 3-2 c2J~3u, + 3-2 B"c2 Bd~3u)' 
I I I I 

+4(3-2)c2Ad~2 uY +2(3-2)BFd~2u, +2(3-2)CFd~2u" (3.10) 
I 1 1 I 

+ 3-2 c2 Ad~2u + 3Au + 6C2 Fu" + 3(3 -2 )FAd~1u 
I I 1 I 1 I 

+2(3-2)c2F 2 d-1u +9(3-2)c2u +3-2c2a-1uu 
X y X\' X V 

I I I 1 

+ 3-2 CFd~1 u,y + 3-2 BFd~1 u, +2(3-2 )C2 Fd~1 u, 

_.'. _.'. 3 _.'. 
+3F2u,+3 2 F 3u+9(3 2 )Fuxx+-(3 2 )Fu2 

2 
I I 

+3-2 c2ud~1 u,) 

From (3.7) - (3.10), we see that w. (n = 0, 1, 2, ... ) are 
conserved densities. Thus there will be infinity of conserved 
densities. Then, we have the following theorem. 
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Theorem 1. The KP class of equations (1.2) possesses an 
infinite number of conserved densities obtained from (3.6) 
by equating coefficients of powers of e to zero. 

Now we can equate coefficients of En in (3.3) for n = 0, 1, 2, 
... to find more conservation laws for (1.2). Then (3.3) becomes 

<>0 00 - 00 

(L,e"w.), +£L,e"w= -3(L,e"w.)2 -2C(L,e"w.)3
-

~ ~ 

I - - -

2.J3a:2 CL,e"w.)(L,e" ~1wny) -.J3EP(L,e"w.)2 + 
~ ~ II=() 

I - - -

.J3ce2B~1 (L,e"w.)2 +AL,e"~1w. -BL,e"~2wny + 
~ ~ ~ 

- - - I -

DL,e"~1wny +EL,e"w.], +£CL,e"~1wny -.J3a:2cL,e"w.)2]y =0 
II=() ~ II=() ~ 

0 Thus, forE , 

I 
ForE , 

1 I 1 I I I 

(u +3-2c2a-1u +3-2Fu) +(u +3-2c2u +3-2Fu +uu 
X xy I XXX xy XX X 

1 _.'. 1 .'. _.'. _.'. .'. _.'. 
+-3 2 Fu2 +-3 2 C 2 BCl-1u2 +Au+3 2 C 2 ACl-2u +3 2 FACl-1u 2 6 X X y X 

I I I I I l 

(3.11) 

-BCl-1u -3-2c2BCl-3 u -3-2c2B2 Cl-3 u -3-2BF a-2 u-3-2FBa-2 u 
xy xyy xy yx xy 

_.'. .'. 1 _.'. _.!. _.'. 
+Du +3 2 C 2 DCl-2 u +-3 2 C 2C DCl-2u +3 2 F DCl-1u+ 

Y xyy
2 

yxy yx 

I I 1 I 

3-2 FDCl-1u + Eu + 3-2 c2cEa-1u + 3-2 FEu) + 
X y X X y X 

l 3 I 1 I I 

(cu +3-2c2a-2 u +3-2c2Ba-2u +3-2c2Aa-1u+ 
y X yy X y X 

(3.13) 

and so on. Thus there will be infinity of conservation laws. 

IV. EXISTENCE OF SOLITARY WAVE SOLUTIONS 

In this section we consider exact solitary wave solutions of 
(1.1) or (1.2). In [3], solitary wave solutions of the KP 
equation were obtained. Also by using the Hirota method 
in soliton theory, solitary wave solutions of KP equation [8] 
were obtained. Exact solutions of nonlinear differential 
equations (NDEs) are of importance in physical problems. 
So far there exists no general method for finding solutions 
of NDEs. Generally, a relevant nonlinear trans-formation is 
a powerful method for solving NDEs. Through a 
dependent variable transformation, two-dimensional solitons 
of the KP equation were obtained [8]. Here we present the 
solitary wave solutions of ( 1.1) via the introduction of certain 
transformations. 

In order to obtain the solitary wave solutions of (1.2), we 
make the transformation of the form : 
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u(x,y,t) = w(1;,9,t) (4.1) 

I I 

l;(x,y,t)=x-JFC 2dy, 9(y,t)=JC 2dy ,t(t)=t 

Equation (1.1) becomes: 

I 3 3 

w~~[-J (F;cz -~Fc-zc,)dy]+ Wsocf -~c2C,dy)+ws< + w: 

wwss +w~s~~ +Aw~ +B(-FC 2 ws +C 2 w9 )+q-F"C 2 w~ + 

I _2 _ _!_ _ _!_ I 1 _2 

2_FC 2 C"w~-FC 2 (-FC 2 wss+C 2 ws9 -2_C" 2 C,w9 + 

I I I I __!_ 

C-2(-FC 2 ws9 +C-2w00 )]+[C-2(2F+G)][-FC 2 w~s + 

1 1 

C-2w~8 ]+(F2 + J (FYG+C-2F;)dy)w~~ =0 (4.2) 

using: 

JFGydY = FG- ]FyGdy 

Equation (4.2) becomes: 

2 
w~-r + w~ + ww~~ + w~~~~ +wee =0 (4.3) 

Then let w(l;, t,9) = w(s- ct + k9) = <1>(11); so (4.3) becomes 

Integration of equation (4.4) gives : 

2 -c<1>11 + <1><1> 11 + <1> 111111 + k <1> 11 = 0 

(4.4) 

(4.5) 

where the constant of integration is set equal to zero which 
is equivalent to imposing the boundary conditions 
<1>,<1>',<1>",<1>"' ~ 0 as 11 ~ ±oo which describe the solitary 

wave. Equation (4.5) may be integrated once to yields: 

-c<l> + .!.<1> 2 + <1> 1111 + k2<1> = c1 2 
(4.6) 

where c1 is an arbitrary constant. Using <1> 11 as an integra-tion 

factor, we get: 

1 2 13 12 122 
--c<l> +-<1> +-<1> +-k <1> =c1<P+c 2 2 6 2 , 2 

(4.7) 

with c2 as arbitrary. For simplicity, we continue with 

c 1 = c 2 = 0, _which is equivalent to imposing the boundary 

conditions mentioned above. Thus equation (4.7) becomes: 

(4.8) 
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Integration of equation (4.8) gives: 

I 
1 -

<1> = 3(c- k 2 )Sech 2[- (c- k 2) 2 (11 +O)] 
2 

(4.9) 

where o is an arbitrary constant of integration. Coming back to 
equation (4.1), we get the solitary wave solutions of the KP 
class of equation ( 1.1) 

Therefore we obtain the following theorem. 

Theorem 2. For the KP class of equations ( 1.1) there exist 
solitary wave solutions. These solitary wave solutions have 
the form: 

( 4.11) 

where 

I 

'If = x- J c 2 (F + k)dy- ct + 0 

c, k and 8 are constants. 
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