ON EXISTENCE OF TWO REAL PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS OF RICCATI TYPE

By H. S. HASSAN

Department of Mathematics, Faculty of Science University of Qatar

Key words: Riccati Equations.

ABSTRACT

In this paper we consider the two equations

$$\dot{z} = z^2 + p(t)z + r_0(t),$$
 (*)
 $\dot{z} = z^2 + p(t)z + r_1(t),$ (**)

where $z \in C$, p, r_1 and r_0 are real, continuous and periodic with period T.

It was shown in [2] that if (*) has two T-periodic solutions and if r_1 (t) $\leq r_0$ (t) for all $t \in [0, T]$, then (**) has two T-periodic solutions. In this note we extend this result by showing that if, moreover, the two T-periodic solutions of (*) are real then so are the T-periodic solutions of (**).

1. Preliminaries

This paper is concerned with the class H of differential equations

$$\dot{z} = z^2 + P(t)z + r(t)$$
 $(z \in C, t \in R),$ (1)

where p and $r \in \mathbb{P}$ and \mathbb{P} is the class of all continuous real-valued functions of period T (T being fixed throughout). The equation (1) is denoted by P and we regard H as the set $\mathbb{P} \times \mathbb{P}$ with norm

$$|P| = \max\{|p(t)|, |r(t)|; 0 \le t \le T\};$$

then (H, |. |) is a Banach Space.

The solution of P satisfying z (t_0) = z_0 is written z_p (t; t_0 , z_0) and the periodic

solutions of P are determined by the zeros of

$$q_p : c \rightarrow z_p(T; O, c) - c.$$

The function q_p is defined on an open subset Q_p of C.

To assist the reader we give precis of those definitions and results from [2], [3], and [4] which we shall need. The multiplicity of a periodic solution ϕ of P is defined as the multiplicity of ϕ (O) as a zero of q_p . It is shown in [4] that H has the following subsets

- B = { P∈ H; P has a real solution which is unbounded both as t increases and as t decreases and is defined for a t-interval of length less than T },
- $H_1 = \{ P \in H; P \text{ has two real } T\text{-periodic solutions and no other periodic solutions } \}$.
- H₂ = { P∈ H; P has two T-periodic solutions, complex conjugate, and no other periodic solutions }.

Account is always taken multiplicity in these definitions. Hence $P \in H_1$ may have only one periodic solution of multiplicity 2. Let H_{11} be the set of P which have exactly one real T-periodic solution. In [2] we proved that H_{11} is the boundary between H_1 and H_2 , that is; $H_{11} = \widetilde{H}_1 \cap \widetilde{H}_2$ (where \widetilde{H}_1 and \widetilde{H}_2 are the closures of H_1 and H_2 , respectively) and Lloyd in [4] proved that $H_1 \cup H_2$ is a component of $H \setminus B$.

In [2] we proved that H_2 and $H_1 \cup H_2$ are open subsets of H and H_1 is a closed subset of H.

2. Two Real T-Periodic Solutions

The method used in [2], [3] and [4] to study P was to look at the linear equation P^* :

$$\ddot{\mathbf{u}} - \mathbf{p}(\mathbf{t})\dot{\mathbf{u}} + \mathbf{r}(\mathbf{t})\mathbf{u} = \mathbf{0},\tag{2}$$

H. S. HASSAN

whose solutions are related to those of P by the transformation $z = -\dot{u}/u$. Let D be the set of P whose corresponding P^* are disconjugate on [O, T]. (Recall that a second order linear differential equation is disconjugate on an interval I if every non-trivial real solution has fewer than two zeros in I).

Lemma 2.1 $B \supseteq H \setminus D$.

(For the proof see [3]).

Directly from Theorem 7 of [1] we can prove the following lemma,

Lemma 2.2 $P = (p, r) \in D$ if and only if

$$\int_{0}^{T} (\exp - \int_{0}^{t} p(s) ds) (\dot{y}^{2} - ry^{2}) dt > 0$$

for all functions y which are piecwise continuously differentiable on [O, T] and satisfy y(O) = y(T) = O.

Directly from Lemma 2.2 we can prove the following lemma,

Lemma 2.3 Let $(p, r_0) \in D$ and $r_1 \in P$. If $r_1(t) \leq r_0(t)$ for all $t \in [0, T]$, then $(p, r_1) \in D$.

Lemma 2.4 If ϕ is the unique T-periodic solution of $(p, r) \in H_{11}$, then

$$2\int_{0}^{T} \phi(t) dt = -\int_{0}^{T} p(t) dt.$$
(For the prove see [4]).

Lemma 2.5 If (p, r_0) , $(p, r_1) \in H_{11}$, and $r_0 (t_0) > r_1 (t_0)$ for some $t_0 \in [0, T]$, then there exists $t_1 \in [0, T]$ such that $r_0 (t_1) \leq r_1 (t)$.

Proof Suppose that $r_o(t) > r_1(t)$ for all $t \in [0, T]$ and $\phi_{0,1} \phi$ are the periodic solutions of (p, r_0) and (p, r_1) , respectively. We have two cases: (i) $\phi_i(t) > \phi_j(t)$ for all $t \in [0, T]$, (ii) $\phi_0(t_2) = \phi_1(t_2)$ for some $t_2 \in [0, T]$.

Case (i) In this case we have

$$\int_{0}^{T} \phi_{i}(t) dt > \int_{0}^{T} \phi_{j}(t) dt,$$

which cotradicts Lemma 2.4

Case (ii) Let $h(t) = \phi_0(t) - \phi_1(t)$. If $h(t_2) = 0$ for some $t_2 \in [0, T]$, then $\dot{h}(t_2) = r_0(t_2) - r_1(t_2) > 0$. Hence $h(t) \ge 0$ over [0, T] and $h(\dot{t}) > 0$ for some \dot{t} near t_2 . Therefore

$$\int_{O}^{T} h(t) dt \ge O$$

and again we have a contradiction to Lemma 2.4.

Theorem 2.6 Suppose that $(p, r_0) \in H_1$. If $r \in P$ and $r_1(t) \leq r_0(t)$ for all $t \in [0, T]$, then $(p, r_1) \in H_1$.

Proof Let us assume that $r_1(t) < r_0(t)$ for all $t \in [0, T]$.

Since $(p, r_0) \in H_1$, then by lemma 2.3

$$L_1 = \{ (p, \lambda r_0 + (1 - \lambda) r_1); 0 \le \lambda \le 1 \} \le D$$

Hence (p, r_0) and (p, r_1) are in the same component of $H \setminus B$. Hence $(p, r_1) \in H_1 \cup H_2$ (see Theorem 2 of [4]).

Let us assume that $(p, r_1) \in H_2$ and let

$$\begin{split} &L_2 = \{ \ (p, \lambda \, r_1); \ O \leqslant \lambda \leqslant 1 \ \} \ . \ \text{It is clear that } L_1 \bigwedge H_1 \neq \emptyset \ , L_1 \bigwedge H_2 \neq \emptyset \ , \\ &L_2 \bigwedge H_2 \neq \emptyset \ \text{ and } L_2 \bigwedge H_1 \neq \emptyset \ . \ \text{Hence there exist } \ \frac{1}{1} \ \text{and } \ \frac{1}{2} \ \text{such that} \\ &(p, \frac{1}{1} r_0 + (1 - \frac{1}{1}) r_1) \ \text{and} \ (p, \frac{1}{2} r_1) \in H_{11} . \ \text{But} \ \frac{1}{2} r_1 < \frac{1}{1} r_0 + (1 - \frac{1}{1}) r_1 \\ &\text{contradicts Lemma 2.4 Therefore} \ (p, r_1) \in H_1 . \end{split}$$

Now suppose that $r_1(t) \le r_0(t)$ for all $t \in [0, T]$. Let $s_n = r_1 - (1/n)$ (n = 1, 2, ...). Hence $(p, s_n) \in H_1$ and $(p, s_n) \longrightarrow (p, r_1)$ as $n \longrightarrow \infty$.

H. S. HASSAN

Therefore $(p, r_1) \in H_1$, because H_1 is a closed subset of H.

Corollary Let $r \in P$ and $k \in R$. If $r(t) \le k^2/4$ for all $t \in [0,T]$, then $(k,r) \in H_1$.

Proof It can be checked that $(k, b) \in H_1$, where $b = \max_{t \in B} r(t)$. Hence by Theorem $2 - 6(k, r) \in H_1$.

REFERENCES

- 1. Coppel, W. A., 1971. Discojugacy (Lecture Notes in Mathematics, 220, Springer-Verlag, Berlin).
- Hassan, H. S., 1982. On the sets of periodic solutions of differential equations
 of Riccati Type, Proceedings of Edinburgh Mathematical Society, 27:
 195-208.
- 3. Lloyd, N. G., 1973. The number of periodic solutions of the equations $\dot{z} = z^N + p_1^{-1}(t) z^{N-1} + ... + p_N^{-1}(t)$, Proc. London Math. Society 27; 667 700.
- 4. Lloyd N. G., 1975. On a class of differential equations of Riccati type, J. London Math. Society (2) 10:1-10.

في وجود حلين حقيقيين دوريين للعادلات تفاضلية من نوع ريكاتي

حسن صادق حسن

في هذا البحث سندرس المعادلتين:

$$z = z^2 + p(t)z + r_o(t),$$
 (*)

$$\dot{z} = z^2 + p(t)z + r_1(t)$$
 (**)

 $T_{0}, r_{0}, r_{0}, p_{0} \to r_{0}, r_{0}, r_{0}, p_{0} \to r_{0}$ حیث $r_{0}, r_{0}, r_{0}, p_{0} \to r_{0}$ دورای دوریین اِذا (*) عندها حلین حقیقیین دوریین اِذا $t \in [0,T]$ $r_{1}(t) \leqslant r_{0}(t)$