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ABSTRACT
In this paper we consider the two equations
i=22+p(t)z+ro(t), *)
z'=22+p(t)z+r1(t), o**)

where z¢ C, p, r| and r j are real, continuous and periodic with period T.

It was shown in{2]that if (*) has two T-periodic solutions and if ry (t) < r (t)
for all te [O, T ], then (**) has two T-periodic solutions. In this note we extend this
result by showing that if, moreover, the two T—periodic solutions of ( *) are real then

so are the T—periodic solutions of ( **).

1. Preliminaries

This paper is concerned with the class H of differential equations

Z=22+P@t)z+r(t) (z€C,t ER),

()

where p and r € P and @ is the class of all continuous real-valued functions of

period T ( T being fixed throughout ). The equation (1) is denoted by P and we

regard H as the set @ x ® with norm
IPl= max{|p(t)|,Ir(t);0 <t < T};
then (H,| . |) is a Banach Space.

The solution of P satisfying z ( to ) = z is written z P (t to, z, ) and the periodic
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solutions of P are determined by the zeros of

q.:¢c —™> zP(T;O,c)—c.

P
The function qp is defined on an open subset Q P of C.

To assist the reader we give precis of those definitions and results from [21,[3),
and [ 4] which we shall need. The multiplicity of a periodic solution ¢ ofPis
defined as the multiplicity of ¢ (O ) as a zero of qp It is shown in [ 4 ] that H has
the following subsets
B = { P€ H; P has a real solution which is unbounded both as t increases and as t

decreases and is defined for a t—interval of length less than T } ,
H L= { P€ H; P has two real T-periodic solutions and no other periodic
solutions } .
H2 = { P€ H; P has two T—beriodic solutions, complex conjugate, and no other
periodic solutions } :
Account is always taken multiplicity in these definitions. Hence P € H] may have
only one periodic solution of multiplicity 2. Let H 1" be the set of P which have
exactly one real T-periodic solution. In [ 2] we proved that H " is the boundary
between H1 and Hz’ that is; Hl | = ﬁl N ;I , ( where ﬁl and ﬁz are the closures
of H : and H 2 respectively ) and Lloyd in [4] proved that H . UH ) is a
component of H\ B.

In[2] we proved that H , and H1 UH , are open subsets of H and H . is a closed
subset of H.

2. Two Real T-Periodic Solutions
The method used in [2], [3] and [4] to study P was to look at the linear
equation P*:

u-p(thu+r(t)u=0, (2)
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whose solutions are related to those of P by the transformation z = - u/u.Let D be
the set of P whose corresponding P" are disconjugate on [O, T ]. (Recall that a
second order linear differential equation is disconjugate on an interval I if every

non-trivial real solution has fewer than two zeros in I).

Lemma 2.1 B=2 H\D.
( For the proofsee [31]).
Directly from Theorem 7 of [ 1 ] we can prove the following lemma,
Lemma 2.2 P = (p,r)€ D ifandonlyif
/T(exp—/‘p(s)ds)('yZ—ryz)dt > 0
for all funct(i)ons y whigh are piecwise continuously differentiable on [O, T] and

satisfyy (O) =y(T) = 0.

Directly from Lemma 2.2 we can prove the following lemma,
Lemma 2.3 Let (p,ro)eD and r € P. If r, (t) < r (t) for all te [O, T],
then ( p, r, )€ D.

Lemma 2.4 If ¢ is the unique T—periodic solution of (p,r) € H 0w then

1T /’T
Ozfq>(t)dt=—0 p(t)dt

( For the prove see [4]).

Lemma 2.5 If (p,ro), (p,r1)€ H“, and T (to) > 1 (to) for some
t0 € [O,T_], then there exists tle[O,T] such that
r (tl) < rl(t)'
Proof Suppose thatr_(t) > T , (t)forallte [O,T]and g, 1¢ are the periodic
solutions of (p, ro) and (p,r . ), respectively. We have two cases: (i) ¢ i(t)

>¢j(t)forallt€ [O,T],(ii)qso(tz) =¢1(t2)forsomet2€ [O,T]
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Case (1) In this case we have

T T
O/dJi(t)dt > O/d)j(t)dt,

which cotradicts Lemma 2.4
Case (ii) Let h (t) = d)o (t) - d)l (t).Ifh (t2) = O for some t2€ [O,T],
then h (t,)=r (t,) -r (t,) > O. Hence h (t) > O over [0, T] and
h(t) > O for some { near t2.Ther$fore
/oh(t)dt =20
and again we have a contradiction to Lemma 2.4.
Theorem 2.6 Suppose that (p, r )€ Hl.IfrIQ(P and (t) < r_(t)forall
te[O,T],then(p,rl e Hl.
Proof Let us assume thatr1 (t) < ro(t)forallt( [0, T]
Since ( p, r0)€ Hl,then by lemma 2.3
L ={(p,>\r0 +(1-Nr ); O< A<1}< D

Hence (p, ro) and (p,r 1) are in the same component of H\B. Hence
(p,rl )eHlU Hz(seeTheoremZOf[4]).

Let us assume that(p,r1 )€H2 and let
L, ={(pAr 30 <\<'1 }.ItisclearthatLln H #6¢,LAH, #¢,
LZ/) H2 # ¢ and LG H1 # & . Hence there exist >\1 and 7\2such that
(P N+ (1= Y)r)and(p, N r)€H, .But r < hr +(1- N,

contradicts Lemma 2.4 Therefore (p, r ) )EH .

Now suppose that r (t) < r (t) forall t€[O,T]. Let s, =1, -(1/n)
(n=1.2,..) Hence (p,sn)€H1 and(p,sn) — (p,rl)asn - o .
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Therefore (p, r . )EH iy because H . is a closed subset of H.
Corollary Let r€ P and k€ R. If r(t) < k*/4 for all t€[O,T], then
(k,r)€ Hl'

Proof It can be checked that (k,b) € H » where b = max r(t). Hence by
Theorem2—6(k,r)€Hl.
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