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ABSTRACT 

In this paper, we will describe some algorithms and give their complexity as following: 

(1) The algorithm for finding a dominating set of radius r in a vertex-weighted graph with small number of spanning tress. 
The complexity of this algorithm for the unicyclic graph is O(m.n). 

(2) The algorithm for finding an absolute and vertex p-center of a vertex-weighted graph with small number of spanning 
trees. The complexity of determining the p-center is O(m.n2 lgn) for absolute (resp., 0(n2 lgn) for vertex) p-center in 
unicyclic graphs. 

(3) The algorithm for finding a p-median in a vertex-weighted graph with mall number of spanning tress. The complexity of 
this algorithm for the class of unicyclic graphs is O(m.n2.p2

) 

1. INTRODUCTION. 

The terminology used in this paper is standard and follows 
that of [1]. A network is a connected finite graph G = (V, E) 
with a nonnegative number w(v) (called the weight of v) 
associated with each of it!: IV I = n vertices, and a positive 
number l(e) (called the length of e) associated with each of its 
IE I edges (1. e., l(e) = c(v" v.), where e = (vro v.) and c(v" 

V 5)) is the length of each (vro v.)). Let Xp = { X~o x2o ... , Xp} be a 
set of p points on G, where by a point on G we mean a point 
along any edge of G which may or not be a vertex of G. We 

define the distance d(v, Xp) between a vertex v of G and a set 
XP on G by 

(1.1) d (v, XP) = min 1~i~p { d(v, x)} 

where d(v, xJ is the length of a shortest path in G between 
vertex v and point xi (xi can be considered as a new vertex 
inserted into the edge e). Let 

(1.2) F 
0 

(XP) = maxv e v {w(v). d(v, Xr)}. 
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* Let Xp be such that 

eL3) FeX*)=min {FeX)}. 
G p Xp on G P 

* Then Xp is called an absolute p-center of G and F (X*) is 
G p 

called the absolute p-radius of G. If Xp and x* in (1.3) are 
p 

restricted to be sets of p vertices of G, then x* is called a p 

vertex p-center and F ex*) is called the vertex p-radius of G. 
G p 

Further we define 

(1.4) H (X ) = I. w(v).dev,X ). 
G p p 

ve V 

We call H (X ) the distance-sum of the set (X )· 
G p P 

* If Xp on G is such that 

(1.5) H (X*)=min {H(X )}, 
G p Xpon G P 

* then Xp is called a p--median of G [2], [3]. Hakimi [3] has 

shown that there exists a set of p vertices v* c v such that 
p 

If all the vertices of the graph G = (V, E) have the same 
weight q, then without loss of generality we shall assume that q 
= 1 and we refer G as a vertex-unweighted graph. Otherwise 
we say that G is a vertex-weighted graph. We shall assume that 
p < n, sinced ifn = p then x; = V, F ex*)= 0 , H (X*)=O' 

G p G p 

while p > n has no mathematical significance . We further 
assume that the graph G contains neither loops nor multiple 
edges. Finally, we assume that for each edge e = (vn v.) the 
length of e is equal to the distance between vr and v. (I. e., l(e) 
= d(vn v.)), because otherwise, the edge e could be eliminated 
without affecting the p-radius of G. 

The inverse of the p-center problem is defined as follows: 
Given a graph G = (V, E) and a positive integer r, find the 
smallest positive integer p such that the p-radius of G is not 
greater than r. This number p is called the absolute domination 

number while a set Xp of p points such that F (X ) :::;; r is 
G p 

called an absolute dominating set of radius r. The vertex 
domination number of radius r and the vertex dominating set of 
radius rare similarly defined. 

The problem of finding a p-center of G was originated by 
Hakimi [2], [3] and is discussed in papers [4], [5], [6], [7], [8] 
and [9]. 

Kariv and Hakimi in [10] described an 0( IE l.n. lg n) 
algorithm for finding an absolute 1-center in a vertex weighted 
graph, and an 0( IE l.n +n2.lg n) algorithm for finding an 
absolute 1-center in a vertex-unweighted graph with the 
assumption that the distance-matrix of the graph is known. 
Also Kariv and Hakimi described in [10] an 
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OCIEJP.n2P-1 f(p-l)!lgn) algorithm (resp., an 

O(IEIP.n2P-1 /(p-1)!) algorithm) for finding an absolute p­

center (1 < p < n) in a vertex weighted (resp., vertex­
unweighted) network. 

In the case, when the graph G is a tree, Kariv and Hakimi in 
[10] described an O(n. lg n) algorithm for finding the (vertex or 
absolute) 1-center of vertex-weighted tree and an O(n) 
algorithm for finding a dominating set of radius r in tree, also 
an O(n2.lg n) algorithm for finding a(vertex or absolute) p-_. 
center (l<p<n) of a vertex-weighed tree. 

In the case, G is unicyclic graph, M. H. HASSAN in [11] 
described an O(n) algorithm for finding a dominating set of 
radius r, and algorithm o(n3

. lg n) (resp., O(n2
. lg n)) for 

finding absolute (resp., vertex) p-center of a vertex-weighted 
graph G (l<p<n). 

Goodman in [12] gave an O(n) algorithm for finding a !­
median of tree, while Kariv and Hakimi in [13] described an 
O(n2 p2

) algorithm for finding a p-median of tree, where p> 1. 

Hassan, M. H. gave in [14] an important results for 
determining a certain bounds of the p-radius (the minimum 
distance sum of p-median, resp.) of the class of cactus graphs. 

2. A dominating set of radius r in graphs 

with small number of spanning trees: 

Now in this part of this section we will show and prove the 
more general algorithm for finding the dominating set in 
arbitrary graph which is very useful in the case of classes of 
graphs with small number of spanning trees. 

Lemma2.1. 

Let G = (V, E) be a connected graph with edge length l(e) > 
0 and vertex weight w(v) ~ 0. Let there exist a dominating set 
of p points of radius ron G. Then there exists a dominating set 
Xp =(xi> x2, •.• , xp) of radius ron G such that 

(2.1) if xi for some i is an internal point of some edge 
(v. , v. ) then 

II 12 

d(v. ,(X - {x.})) > d(V. , x.) and also 
11 p I 11 I 

d(v. ,(X - {x.})) > d(V. , x.). 
12 p I 12 I 

Proof 

We prove this lemma by contradiction. Assume that there is 
no dominating set XP of radius on G fulfilling to (2.1) and let 
Yp =( Y~> y2, ••• , Yp) be a dominating set of radius ron G such 
that this set Y P has the least number k of points not satisfying 
condition (2.1) from all the dominating sets of p points of 
radius ron G. 
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Let k ::t:. 0 and let Ys EYP be an internal point of edge (vi> 
v2) which does not satisfies (2.1 ). Without loss of generality we 
can assume that 

d(v" Ys) 2': d(vb (Yp - {y.})) = d(v" y1)), where y1 is some 
vertex of (Yp- y.). 

We define y' = y' y' y' ) in such a way, that "' = y. for 
p 1' 2····· p 1 s 1 

all i ::t:. s andy~ =v
2

. We dividev-v vv v ~v-"' so 
1 -1 2'1"2-'1' 

that 

V1 = {v E V; d(v, Ys) = d(y., Y1) + d(vb v) < d(y., v2) + d(v, 
v2)} and 

V2 = {v E V; d(v, Ys) = d(y., v2) + d(v2, v)::;; d(y5, v1)+ d(v, 
Y1)} 

(2.2) For all i ::t:. s and every vertex v E V it holds 

d(y~, v) =d(y., v) 
1 I 

(2.3) For every vertex v E V2 it holds 

d(y',v)=d(v ,v):s;d(v
2
,v)+d(v

2
,y )=d(y, v) 

s 2 s s 

(2.4) For every vertex v E V1 it holds 

d(y~,v) :s;d(y~,v1 ) +d(v
1
,v)=d(y

1
,v

1
) +d(v

1
,v):s; 

d(y , v
1
) +d(v, v ) = d(v, y ). 

s I s 

From (2.2), (2.3) and (2.4) it follows that for all v E V holds 

d(v,Y') ::;; d(v, y )• i.e. Y; is a dominating set of radius r, 
p p 

too, and there are less point in Yp not satisfying (2.1) than in 

This is a contradiction. Hence there exists a dominating set 

Yp of radius r, all points of which satisfy the condition (2.1 ). 

Lemma2.2 

Let G = (V, E) be a connected graph with given weight w of 
vertices and length 1 of edges. Let there exist a dominating set 
of p points of radius ron G. Then there exists a dominating set 
XP = (x" x2. ... , xp) of radius ron G such that 

(2.5) If X;, xi for some i, j are internal point of some edges e;, 
ei resp., then e; and ei are not adjacent. 

Proof 

From lemma 2.1 it follows that there exists a dominating set 
Xp = (x" x2, ... , Xp) of the radius r on G with the property (2.1 ). 

33 

We shall show that then Xp has the property (2.5), too. We 
shall :-rove this fact by contradiction. 

Let Xp have not the property (2.5), then there exist internal 
points x. E e. . x1 E e1 in G such that e. and e1 are adjacent, 
i.e. there exist vertices Y0 , Y5, v1 E V such that e.= (v

0
, v.), e

1 
= 

(v0 , vJ. without loss of generality we can assume that d(x
5

, Y
0

) 

::;; d(xh Y0 ) and then 

d(Y0 , (Xp- {xr}))::;; d(v0 , x.)::;; d(v0 , xJ and then Xp does not 
satisfy (2.1) which is a contradiction proving the lemma. 

Lemma 2.3 

Let G = (V, E) be a connected graph with a vertex weight w 
and edge length I. Let Xp = (xi> x2, •.• , Xp) be a set of p points 
on G such that for every internal point x; E XP of an edge 
(v. , v. ) it holds 

11 12 

d(v. ,(X - {x.})) > d(V. , x.) and also 
1
1 p 1 11 1 

d(v. ,(X - {x.})) > d(V. , x.). 
1
2 p 1 12 1 

Then there exists a spanning tree T of G such that all the 
points of Xp lie on T, too, and that da(v, Xp) = dT(v, Xp) for all 
VE V. 

Proof 

We shall construct the spanning tree T using induction in 
finite number of steps. 

Step 0: 

We define T0 = (V(T0 ), E(T0 )), where 

V (T0 ) = { v E V; 3 X; E XP , X; = v or 3 xi E Xp 
I 

and V E V so that xi is intern~! point of the edge 
I 

(v , v) } 

E(T 0 ) = { e E E ; 3 x; E XP such that x; is an internal point of 
the edge e} 

It follow from the proof of lemma 2.2 the To is a forest with 
maximum vertex degree I, because no two edges in To are 
adjacent . It follows from the assumption that for every 

v EV(T0 ) holds dT. (v,X ) d (v, X ) 
o p G p 

Step k: 

Let Tk-I be such a forest that for all v E V (Tk_ 1) we have 

dT. (v, X ) = d (v, X ) . 
k-1 p G p 

Let V be such a vertex of V(G)- V(Tk_ 1) that for all 

' 
vE V(G)- V(Tk_ 1) it holds d0 {v ,X ) ::;; d (v, X ) 

p G p 

Let (x. = v , v , ... , v", v') be a path of the length 
1 I 2 

d 0 (v ,X ) 
p 
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from the set Xp to V in G. Then we define V(Tk) = V(Tk_1) u 
I 

{v } 
II 

E(TJ = E(Tk-1) u {(V , V) }. 

As we have added only an end vertex with it's ·edge by this 
operation, the graph T k remains a forest. From the choice of 

I II 

vertex V it follows that V E V(Tk-1) and from the 
inductional assumption it follows that 

dG(v ... X)=d (v,X) 
P Tk- 1 P from E(T k) c E(G) follows 

' d (v,X);:::d (v,X) 
Tk p G p 

Further we have 

dT (v'.x ) ~ dT (v', v")+dT (v",x ) = dG(v', v") + d (v", x ) 
k p k k p G p 

= dG(v', Xp) 

This implies that for all v E V(Tk) it holds 

d ( v , x ) ;::: d ( v . x ) . end of step k. 
T p G p 
k 

Now we put m = I V(G) - V(T0 ) I. After m steps we 
obtain the forest Tm such that V(Tm) = V(G) and E(Tm) c E(G) 
and for all v E V it holds 

d (v ,X ) = d (v , X )' 
T p G p 

m 

Now in the end we add to the forest Tm arbitrary 
edges from E(G) to obtain connected graph. without cycle. In 
this way we obtain the spanning tree T of G which we wanted 
to find. 

Theorem 2.1 

Let G = (V, E) be a connected graph with given weight w of 
vertices and length 1 of edges. Let there exist a dominating set 
of p points of radius r on G. Then there exists a spanning tree T 
of G with a dominating set 

Xp = (x~> x2, ... , Xp) on T of the same radius r. 

Proof 

According to Lemma 2.1 there exists a dominating set 

XP = (x~> x2, ... , xp) on G such that da(v, Xp) $ r for every v E 

V and that for every internal point xi E Xp of an edge 

(v. , v. ) it holds d(v. ,(X - {x.})) > d(V. , x.) 
11 1 p 1 1 l 
1 2 I 1 

and also 
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d(v. ,(x - {x.})) > d(V. , X.). 
I p 
2 

1 I 1 
2 

Then according to Lemma 2.3 there exists a spanning tree 
T of G such that all the points of Xp lie on T, and that 

d (v,X ) = d (v, x ) ~ r holds for all v E V. 
T p G p 

From this directly follows that Xp is a dominating set of 
radius ron T. 

After proving this important theorem we are able to 
formulate a general algorithm for finding the number p and the 
dominating set of radius r. 

Algorithm 2.1 

A dominating set of radius r in a vertex-weighted graph G 

Step 1: Find all the spanning trees of G. 

Step 2: For every spanning tree T of G use the Hakimi's 
algorithm [10] determining the dominating set on T. 

Step 3: Search all the spanning trees with their dominating set 
and take that spanning tree which has the smallest number p of 
points of the dominating set. 

From the theorem 2.1 it follows that if we want to find the 
dominating set on some graph it is sufficient to find the 
dominating set on all his spanning trees and then to take the 
best one. This implies that the algorithm 2.1 is correct. 

Step 1 in algorithm 2.1 is described only in general but for a 
concrete class of graphs it is necessary to replace it by a 
concrete algorithm for generation all the spanning trees of a 
graph. E.g. such an algorithm in the case of unicyclic graph 
consists of sequential deleting of one edge from the cycle. Let 
the complexity of Step 1 be Z, then the complexity of the 
whole algorithm is O(Z + K.n), where K is the number of 
spanning trees of G. From this formula it follows that 
Algorithm 2.1 will work best if the graph has not too many 
spanning trees. 

Corally 2.1 

The complexity of algorithm 2.1 for determining the 
dominating set of radius r on a unicylic graphs is O(m.n) $ 

O(n2
) where m is the length of the cycle of the graph. 

Corally 2.2 

The complexity of algorithm 2.1 . for determining the 
dominating set of radius r in a cactus graph (Where a cactus is 
a connected graph, every cycle block of which is a cycle [1]), 
with k cycles of lengths mb m2, ... , mk is O(n.m1.m2 ... m0 $ 

O(n.mk) $ O(nk+l) where m = max {m } 
I ~i ~k i 

3. A p-center (p > 1) of vertex-weighted graphs 

with small number of spanning trees 

In this section we describe two general algorithms for 
finding an (absolute or vertex) p-center of vertex-weighted 
graphs which are for the classes of graphs with small number 
of spanning trees more efficient that the Kariv-Hakimi's [10] 
general algorithm. 
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The first of these algorithm is based on the previous 
algorithm 2.1 for finding the (absolute or vertex) domination 
number of radius r and a corresponding dominating set. 

Kariv and Hak:imi showed in [10] that there exist 0( IE I n2) 

(0(n2
), resp.) possible values of the absolute (vertex, resp.) p­

radius for the absolute (vertex, resp.) p-center. Denote the set 
of all the possible values of p-radius by Q. We can find Q in 
the time 0 (IE I n2

) (O(n2
), resp.) [10]. 

Let the desired (absolute or vertex) p-radius be denoted by rP. 
I 

Given f E Q , the (absolute or vertex) domination number 

p of radius r can be found by algorithm 2.1. if p' :s; p , then 

r ::;; r therefore, we obtain: 
p 

' ' 
r = min , Q {r; p ~ p}. p r E 

Thus, by using algorithm 2.1 one can search the 0( I E I n2) or 
I 

0(n2
) possible values f and find the p-radius of the given 

graph. 

Algorithm 2.1 which gives the domination number p , also 

constructs a dominating set of radius r . Thus, once the p­
radius rP is known, one can construct a dominating set of radius 
rp. Let p1 be the number of points in this set. If we add to the 
dominating set p - p1 points (arbitrary p - p1 points in the case 
of absolute p-center, or p - p1 arbitrary vertices in the case of 
vertex p-center), then we obtain a desired (absolute or vertex) 
p-center. 

In this way the following algorithm for finding the (absolute 
or vertex) p-center is verified. 

Algorithm 3.1 
graph. 

A p-center (p > 1) of a vertex-weighted 

I 

Step 1: Calculate the 0( IE I n2
) (O(n2

), resp.) values r for 
the absolute (vertex, resp.) p-center (by Kariv and Hakimi 
[10]). 

Step 2: Arrange the 0( IE I n2
) (0(n2

), resp.) values r m a 
list L according to a nondecreasing order. 

Step 3: By performing a binary search on the list L of the 

values r , and by using Algorithm 2.1 , find the smallest r , 

for which p ::;; p (where p is the domination number of 

radius r ). denote this value of r by rp , and denote the 
domination number of radius rP by p1. 

* Step 4: Let X be the dominating set of radius rp as 
p1 

constructed by Algorithm 2.1. Add any arbitrary p - p1 points 

X* to (in the case of the vertex p-center, these points must 
PI 
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* be vertices). The resulting set X is a p-center of the given 
pl 

graph. 

Step 1 of Algorithm 3.1 is carried out in 0( IE I n2
) (O(n2), 

resp.) operations. Step 2 requires 0( IE I n2 lg n) (0(n2 Ig 
n), resp.) 

operations. The complexity of the binary search which is 
performed in Step 3 is O(lg n) operations, while Algorithm 2.1 
which is carried out in each search case costs O(Z + m.K) 
operations, where K is the number of all spanning trees of G 
and Z is the complexity of finding all spanning trees of G. Thus 
the overall complexity of Algorithm 3.1 in the general case is 
0( IE I n2 

lg n + Z + K.n. lg n) for the absolute p-center or 
O(n

2 
lg n + Z + K.n. lg n) for the vertex p-center. These 

general formulas imply the following corollaries in some 
special cases. 

Corally 3.1 

The complexity of algorithm 3.1 in the case of unicylic 
graphs is O(n3 lg n) (O(n2 lg n), resp.) for the absolute 
(vertex, resp.) p-center. 

Corally 3.2 

The complexity of algorithm 3.1 in the case of cactus graph 
with k cycles oflengths m1 s; m2 :5: .•• s; mk = m is 

O(n3 lg n + m1 .m2 .•... mk .n lg n) s; O(n3 lg n + mk .n lg n) s; 
O(nk+l lg n) for absolute p-center and 

O(n2 lg n + m1 .m2 .•••. mk .n lg n) s; O(n2 lg n + mk .n lg n) :5: 
O(nk+l lg n) for vertex p-center. 

For the next part of this paper it will be useful to record the 
following observation. 

Lemma 3.1 

Let G = (V, E) be a connected graph with vertex weight w 
and the edge length I and let G1 = (V~o E1) be a connected 
subgraph of G, such that V = V 1o E1 c E. Then the value of the 
(absolute or vertex) p-center or the minimum distance sum of 
the p-median of G1 is equal or greater than the value of the 
same parameter of G. 

Proof 

The proof of this lemma follows immediately from the fact 
that 

d
0 

(x, v) 2: dG (x, v) 
I 

point x on G1. 

for arbitrary vertex v E V and arbitrary 

The second algorith~ which we will describe in this section 
is based on the following theorem. 

Theorem 3.1 

Let G = (V, E) be a connected graph with the vertex weight 
w and with the edge length L Let the (absolute or vertex) p­
radius of G be rp. Then there exist a spanning tree T of G with 
the same p-radius rp. 
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Proof 

The proof of this theory follows directly from the(}rem 2.1. 
Let Yp be an absolute (vertex, resp.) p-center on G with the p­
radius rP, then Yp is the dominating set on G of the radius rp. 
From theorem 2.1 it follows that there exists spanning tree T of 
G with a dominating set Xp of radius rp. 

From the proof of theorem 2.1 it follows that if Yp c V, 
then Xp= Yp· From this fact and from lemma 3.1 directly 
follows that Xp is the absolute (vertex, resp.) p-center ofT with 
the radius rP. 

From theorem 3.1 it follows that if we want ot find the 
(absolute or vertex) p-center on G, it is sufficient to search all 
the spanning trees of G, determine the p-radius for each one 
and then to choose the spanning tree which has the lowest p­
radius. This p-radius will be the p-radius of G and the 
corresponding p-center of the best spanning tree will be the p­
center of G, as well. These considerations allow us to 
formulate the next general algorithm. 

Algorithm 3.2 A p-center (p> 1) of vertex weighted graph G 

Step 1: Determine all the spanning trees of the graph. 

Step 2: For each spanning tree use the Kariv and Hakim's 
algorithm [10] for deterrning the p-center and p-radius on a 
tree. 

Step 3: Compare the values of the p-radius of all spanning 
trees and choose the spanning tree with lowest p-radius. This p­
radius will be the p-radius of G and the coressponding p-center 
will be the p-center of G, too. 

Let us assume that K is the number of all the spanning trees 
and let Z be the complexity of the algorithm finding them. As 
the complexity of the Kariv-Hakirni's algorithm for finding the 
p-center on the tree is O(n2 lg n), the complexity of Algorithm 
3.2 is O(Z + Kn2 lg n) both for the absolute and vertex p­
center. This general formula gives us special cases following 
corollaries. 

Corollary 3.3 

The complexity of algorithm 3.2 in the case of unicyclic 
graph with the cycle of length m is 0(m.n2 lg n). 

Corollary 3.4 

The complexity of algorithm 3.2 in the case of cactus with k 
cycles of lengths m1 ::;; m2 ::;; ... ::;; mk = m is 

0( m1 .mz . .... mk .n2 lg n) ::;; O(mk .n2 lg n) ::;; O(nk+Z lg n). 

From corollaries 3.1 - 3.4 we can see that it is better to use 
Algorithm 3.2 for seeking an absolute p-center of an unicyclic 
graph (mainly if the cycle is short) and that the Algorithm 3.1 
is better for seeking the vertex p-center of all cactus graphs and 
for seeking the absolute p-center of cactus graphs with two and 
more cycles. 

4. A p-median (P > 1) of a vertex weighted graphs with 
small number of spanning trees 

Kariv and Hakimi in [13] described an 0(n2.p2
) algorithm 

for finding a p-median (p > 1) of a tree T as follows: 
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Begin by converting the given tree into a rooted tree as 
follows: 

We pick an arbitrary vertex V0 E V to be the "root" of tree 
T. Let v be a vertex of the tree. We define the level Lev(v) of v 
to be the number of edges on the path p(v0 , v) which leads from 
the root V0 to v (in particular Lev(v0 ) = 0). 

We denote L =max y{Lev(v)}· If v =I- V0 , then by 
ill VE 

removing the last edge of the path p(v0 , v) we obtain two 
connected subtrees. We denote the subtree which contains v by 
T v• and we define v as the root ofT v (in particular, if v is a leaf 
ofT, then Tv is the single vertex v). We also define 

Tv to be the original tree T. It is not difficult to see that if 
0 

T and V -=/= v then. Lev ( V ) > Lev ( v ). The number 
V E V 

of vertices of Tv is denoted by I Tv I (in particular IT I = 
vo 

n). 

Let v E V and let E(v) be the set of all edges of Tv which are 
adjacent to v (in particular, if vis a leaf ofT then E(v) = cj>). 

We define an arbitrary order among the edges of E(v), and we 
denote the L-th edge (according to this order by e(v, I). If 
vertex v. is the other endpoint of the edge e(v, I) (namely, e(v, 
I)= (v, v.)), then we say that v. is the 1-th son of v, and vis the 
father F(v.) of v5 • 

As a pre-procedure for the algorithm we compute the 
distance matrix of the tree (this requires O(n2

) steps). 

The algorithm itself is of dynamic-programming type, and it 
consists of two phases: During the first phase we traverse the 
edges of the tree "upward", from the vertices of higher levels 
towards the vertices of lower levels, and we compute certain 
values to be associated with the edges and the vertices of the 
tree; these values are in fact the corresponding distance-sum of 
k-medians (1 ::;; k::;; p) as calculated over the different subtrees 
Tv and over other subtrees of the original tree T. In particular, 
we find the distance sum H(vo. p) corresponding to a p-median 
of the whole tree. We use these values throughout the second 
phase in order to traverse the tree "downward", from lower 
levels to higher levels, and to locate the points of a p-median at 
p selected vertices ofT. 

Our aim in this section is to describe an algorithm finding a 
p-median in a general network which is efficient mainly for 
graphs with small number of spanning trees. This algorithm is 
based on the next theorem. 

Theorem 4.1 

Let G = (V, E) be a connected graph with the vertex weight 
w and the edge length I. Let Xp = (x~o x2, ..• , Xp), XP c V be a 
vertex p-median of G with the distance sum H(Xp). Then there 
exists spanning tree T of G such that Xp is a p-medain of T 
with the same distance sum, i.e 
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Proof 

As the set of vertices Xp c: V Satisfies the conditions of 
Lemma 2.3 it follows that there exists spanning tree T of G 
such that 

do(v, Xp) = dT(v, Xp) for all v E V. From this immediately 
follows that 

HT(Xp) = I w(v).d1 (v,X ) = I w(v).dG (v,X ) = HG (X ) 
veV p veV p p 

From this and from Lemma 3.1 we have that Xp is a p­
median ofT with the same distance sum as the graph G. 

After proving theorem 4.1 we know that if we want to find a 
p-median of general graph G, it is sufficient to search all the 
spanning tress of G, determin~ the p-median and the minimum 
distance sum for each spanning tree and then to choose that 
spanning tree which has the lowest minimum distance sum. 
This distance sum will be the minimum distance sum for the 
graph G and the corresponding p-median of the best spanning 
tree will be the p-median of G, too. After this consideration we 
are able to formulate the next general algorithm. 

Algorithm 4.1 A p-median (P > 1) of a vertex-weighted 
gr~ph 

Step 1: Determine all the spanning trees of the graph. 

Step 2: For each spanning tree use Kariv-Hakimi's algorithm 
[13] for determining the p-median and the minimum distance 
sum on a tree. 

Step 3: Compare the values of minimum distance sums of all 
spanning trees and choose the spanning tree with the lowest 
minimum distance sum. This values will be the minimum 
distance sum of G and the corresponding p-median will be the 
p-median of G, too. 

Let us assume that K is the nmuber of all the spanning trees 
and let Z be the complexity of algorithm for finding them. As 
the complexity of Kariv-Hakimi's algorithm used in step 2 is 
O(n2.p2

) [13]. 

The complexity of algorithm 4.1 is O(Z + k.n2.p2
). This general 

formula gives us the following corollaries in some special 
cases.Corollarv 4.1 

The complexity of algorithm 4.1 in the case of unicyclic 
graph with the cycle oflength m is O(m.n2.p2

) ~ O(n3.p2). 

Corollary 4.2 

The complexity of algorithm 4.1 in the case of cactus graph 
with the k cycles of length m1 ~ m2 ~ ... ~ mk = m . is 

0( m1 .m2 .... :ffik .n2 p2) ~ O(mk .n2 .p2) ~ O(nk+2p2). 
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