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ABSTRACT
In this paper a Dirichlet problem, with singular integral condition, is studied. It is
shown that such problem can be reduced to a regular equation which allows us to
construct the solution.

Let G be a simply connected bounded region with a simple smooth contour C. Consider the
equation

Au=0 ¢y

where A is the Laplace’s operator and u is a vector vector function which takes values in
Banach algebra with involution R. In this paper we are concerned with the regular solution of
equation (1) in G which satisfies, on C, the singular integral condition:

T
au(t) + & v @ dT + / k(t, T) u(T)dT = f(t) (2
- m ¢ T C

where a (t), b(t), k(t, T) and £(t) assume values in R, and each of them satisfies a Holder
condition.

In the case a(t) = 1, b(t) = 0 and k(t, T) = 0,
condition (2) takes the form:

u(t) = f(t) @)
while in the case a(t) = 0, b(t) = 1 and k(t, T) = 0,

condition (2) takes the form

1 u(T) 1 £T) )
—— J ——— dT = (t), which implies that u(t) = ~— / dT 29
- Ef T (t), which imp ) aJ T

The problem of finding the regular solution of (1) in G prescribed by (2') or (2"), on C, is the
usual Dirichlet problem for a vector function. The more general problem (1) - (2), mentioned
earlier also called Dirichlet problem when (2) is solvable with respect to u.
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On Dirichlet Problem with Singular Integral Boundary Condition

The operator form of condition (2) is
au+bSu+Ku=f 3)

where S is a singular operator satisfying the conditions:
1)$* = I, 2) Vv €R the operator Sv — V8 is regular[1]

Lemma: If S is the singular operator mentioned above, then Yv.weR, we have
(i) Svw = vSw + Nw

(i) SvSw = vw + Qw
where N and Q are regular operators.

Svw + vSw ~— vSw
= vSw + (Sv — vS)w

then from 2), it follows

Svw = vSw + Nw.

Proof: (i) Since Svw

(ii) Since SvSw = SvSw + vw — vw,
then it follows from 1)
SvSw = vw + SvSw - Shvw

vw + S(v§ — Sv)w

Since S in singular and vS — Sv is regular,
then S(vS — Sv) is regular and thus we have
SvSw = vw + Qw.

Theorem: Problem (1)-(2) can be reduced to the regular equation
qw + Lw =h
which is completely defined in the space R’

Proof: Every regular solution of (1) takes the form
u=25@+ 02 4

where & (z) is an arbitrary vector function in G and & (z) is its involution.

Thus,
=2 +30 ®)
Substituting from (5) in (3) we find
a(P+2)+bS(P+P) +K(P+P) =f ©
The unique integral representation on L.N. Vekua,[2],for the function  (z) takes the
form
TTS§(T
® (z) = f—'?—ai d T+ ik ™
C -
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where 8(T) = 8(T) and satisfies Holder condition, k; = k; (constant).
From (7), we obtain [2]

s @=mted®+ / TT8 D 4r gy ®)
C T -t ‘
hence
- _ TTs (M <
[—j— 1t -—'_— dT k 9

) rutt8(t)+cf —— ik, ©)
Since ’_I‘_d-TT = Td’-rt + din ( ? : t ), [2] , equation (9) takes the form
—_— TTs (T
e (t)=mit't§(t) + S —-—Ti(t-)— dT + Cf hy(t, T).(T)dT — ik (10)

c _

where the regular kernel hy(t, T) is given by:

D =TTEn &Y.
Equations (8) and (10), can be written respectively in the form

5 () =mitt5() + L CfS(T) ar+ [ L TT“ 8 (T)dT + ik, 11)

T = nirtH () + L Cf 8T rs4 ! TT“ & (T)dT

+F hy(t.T) 8 (T)dT - ik, (12)
Substituting from (11) and (12) in (5) we have
ule= =80 + =2 SO ar+ / M) STt (13)

where o(t) = i ('t - t9),
B(t) = mi (Ft + t'),

and

TTt | TTtt
Mt T = TR+ S b, (14)
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On Dirichlet Problem with Singular Integral Boundary Condition

The operator form of (13) is given by

be=x8 + pSE+M$§ (15)
Consequently from (15) and (16), we obtain:

a(x 6+ BSS+MB)+bS(x 3+ ASH+MB) +K(x 8+ BSS+MJ)=f (16)

ax8 +aPfSE +bSx§ +bS.fS§ + Tob =f 17)

where Tg is a regular operator

Tob= K(x6 + BSS + MH) + aM§ + bSM§

using the lemma, the following equation is obtained from (17)

ax§ +aBS§ +bxS§ +bMAE +bP,& +bP,S +bQ,& + T =f (18)

where P; and Q1 are regular and completely defined by the following:

S°C8= OCSS + Pla,

SRS =R8 +Q,§ (19)
Let,

m = ax + bf,

n=af + b,

and the regular operator Y
Y =bP; +bQ; + To (20)

we obtaine from (18)
mb+nS6 + Y8 =1 21

and therefore, problem (1)-(2) can be reduced to the singular operator equation (21)
which is reshaped in a regular form as follows [3] :

From (21)

Sm8& + SnS&+ SY b = Sf 22)
since 8 = I, we obtain from (22)

SmSS& +SnS§ +SYSS§ = Sf (23)

let & = ¢, and S§ = ¢ ,, consequently from (21) and (23) the following system of
equations is produced

m91+nQ2+Y‘f1=f ) (24)
SmSt, + SnSY;, + SYSy, = Sf

Using the lemma, the above system takes the form

ny; + ny, + Yy, = f '
Ill.fl+m\.f2+N1q1+N2(f2+Squ’2=Sf
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where N; and N, are regular operators, which are completely defined by the following

SnSy; = ng; + Ni¢y,

Squ2=mq2+N2q2 (26)
Define,
m n
q = (27)
n m
Y o
L= (28)
N; N, + SYS
h =(f,Sf) (29)
w=(® 92). (30)

The system (25), takes the form
qW+LW=h @31
which is regular and completely defined in the space R’, the proof is complete.

If q possess a bounded inverse ¢~ equation (31) has

W+ LoW=he (32)
which is a regular equation with regular operator Lo =q~'L in the space R? and
therefore, if 8 is the solution of equation (21), then (¢, ¢ ,) = (&, 58 ) is the soluton
of equation (32) and conversely if & = (y1, ¢ 2) is the solution (32) then, & =

+S .
Al c2 is the solution (21) which allows us toconstruct the solution of the problem
2
- @
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