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ABSTRACT: 

In this paper we consider long range diffusion, examine the local behavior of epidemics in U·q. In section 1 
of chapter 2 we develop a model, the long range diffusion pressure in planktonic patchiness and then in secion 
2 we fid the solution to such model. 

1. LOCAL BEHAVIOR OF EPIDEMICS IN Lp,q 

As described by F. Hoppensteadt ([4, pp.46, 47]), a 
population is partitioned into several distinct classes when 
studying an infectious disease. In particular, some of the 
classes are the susceptibles (denoted by S ) and some are the 
infectives (denoted by I). 

F. Hoppensteadt studied the basic mechanism for driving a 
contagious phenomenon as the interaction between suscptibles 
and infectives, and considered the following model: 

(1.1) 

23 

di 
- = r[IS(t)- IS(t- cr)] 
dt 

where S:;:: S(t), I= I(t), and A, r, cr are constants. 

(1.2) 

We shall extend ( 1.1) and ( 1.2), and consider a more realistic 
case in which we have diffusion or spread over a certain region 
of certain area. The population density will be a function of 
space and time. So, we consider S = S(x, t) and I= I(x, t) . 

Here, we assume that the delay (cr) is very small relatively to 

T' (i.e., 0 < cr < < T') for which 0 < t < T' . This means that 

the disease has an incubation period of cr days. Let us consider 
the following system: 
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as . 
--AS =A-ci·S at 
a I 
--AI = c[IS(x, t)- IS(x, t- cr)] at 

where A, c and cr are diffusion parameters. 

(1.3) 

(1.4) 

Let us apply the principle of Allometry: that is, I and S are 
linked by allometric relation if 

1di cdS 
--=--
I dt S dt 

(1.5) 

That is, the percentage rates of change of both I and S are in a 
linear relationship. 

The principle of Allometry is saying that the diffusion 
parameter c in equations (1.3) and (1.4) should be written as a 
power of I or S. 

In this case, the population pressure should be due to the 
infectives ( I ) not the susceptibles ( S ), because the infectives 
are the spreading subpopulation. 

NOTE. If we use H to denote Herbivore and P to denote 
Phytoplankton as we did in the previous sections, instead of I 
and S here, then the pressure should be due to H and not to P 
for the same reason above. Therefore, it is advisiable to 
introduce the following transmition coefficient: 

·o 
c = c(I)- col . (1.6) 

where c0 and o are constants. We assume here that the 

parameter A in (1.3) is actually a compact supported function 
of density. S0, if we impose initial conditions, then using (1.6), 
equations (1.3) and (1.4) become 

and 

as o+1 --AS=A-c0I ·S at 
S(x,O) =So 

~~ -AI= c0 [1°+1s- I0+1s(x, t- cr)] 

I(x,O) = I0 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

We shall look at the short range diffusion or "local 
behavior." That is, how the illness spreads during a short 
period of time. Since the spread velocity is not infinite, the 
local solution in time are very meaningful. 

Also, we shall assume that I0 and S0 in (1.8) and (1.10), 

respectively, have compact support (i.e., they are bounded zero 
outside a certain set); Here we use the Benedek-Panzone 
Potential Theorem, see [2]. 

As we have seen before in [1], the method guarantees the 
existence and uniqueness of solutions for small time. The main 
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point is to find the appropriate p and q in the IJ·q norms. We 
shall now proceed in finding those values of p and q . 

Let us now consider (1.7), (1.8),(1.9) and (1.10) to obtain 

S=K®A-c0K®(I0+1 ·S)+K*S0 (1.11) 

I= c0K® (1°+1 ·S)- c0K ® (I0+1 . S(x,t -cr)) + K *I0 - (1.12) 

Using the same estimate we used before for the 
fundamental solution to the heat operator K with dimension n = 
2 we get 

c 
Ks----

{lxl + t1/2r 
that is, 

(n=2) 

(1.13) 

NOTE. The reason for writing 4-2 instead of 2 in (1.13) is 
because the sum of the dimensions of ( Xp X2 , t) is 

respectively, 1 + 1 +2 = 4. Observe that K ® A = constant, 
and we may deal with the initial data as we did before. 

So, we are going to apply the Benedek-Pnazone Potential 
Operator Theorem, see[2], for these terms first in the x variable 
and then in the t variable. We shall consider two cases: Case 1: 
p = q, Case 2: p -::1= q. 

Case 1 : p = q. Thus the potential operators in ( 1.11) and ( 1.12) 

to map an lJ into itself, we should have 

1 0+1 2 
q-=-P--4 , o+1<p<2(o+1) 

Hence when p = q, 

p=20 

and 

p>0+1 

Thus, in view of (1.15) and (1.16), we have 

O> 1 and p>2 

Hence, 

IIT(I,S)II2o,2o s C~(I,S)II2o.2o 

where C is a constant. 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

Another way to look at the power of I0+1 · S as consisting 

of one degree, i.e., degree of I0
'1-l · S 1 = o + 2 and not 

o + 1 as we did before. Doing this, we get 

1 0+2 2 
-=----, 0+2<p<2(0+2) 
p p 4 
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Thus, p = 2(8 + 1) ; and when we take p > 8 + 2, we arrive at 

0>0 and p>2 

Hence 

IIT(I,S)II2(<i+I),2(<i+I) ~ CII(I,S)II2(<i+I),2(<i+l)' 8 > 0 (1.18) 

Obs~rve that both (1.17) and (1.18) give the same result. 

Case 2: p :t= q. For this case we consider II II with p :t= q. 
p,q 

First we take the convolution with respect to space with index 
p, and then with respect to time with index q, see[1], page 16. 

Thus, we use here mixed norms for which p, q > 8 + 1 and the 
following estimates for K: 

c c 1 
K< <--·--

- (lxl+ti/2)2 -lxl2-9 ten 

So, 

cT'e/2 
K ~ ----.,.9-, 0 < t < T' and 0 < 8 + £ < 2 +£ 

lxl2-et 2 

(1.19) 

As we did before, since e;e = I - 2-(~+£) , K may be 

rewritten as 

c T'e+2 
K < --· ( 1.20) 

-lxl2-e I- 2-(~+e) 

Now, in order to have IIT(I,S)IIp q ~ cii(I,S)II with 
2· 2 p1,q1 

PI = P2 and q I = q 2 we shall use (1.20) and apply the 
Potential Operator Theorem to obtain 

o+ I 8 
-=----

2 

where 

2 
O+I<pi <-(8+I) 

8 

_I_=O+I_(2-(8+£)) 
q2 qi 2 

and 

s: I 2(8+I) 
u+ <qi< 

2-(8+£) 

Now, with PI=P2 in (1.2I) and qi=q 2 in 
obtain 

28 28 
PI =e, qi = 2 _(8 +£) 

By using (1.22), (1.24) and (1.25), we obtain 

(1.2I) 

(1.22) 

(1.23) 

(1.24) 

(1.23), we 

(1.25) 
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8 2 
--<0 and ---I<O 
2-8 8+£ 

This implies that 

-.!.[_8_+ 2-(8+£)]<o 
2 2-8 8+£ 

where as we have required: 

o < 8 + £ < 2, £ > o and o < 8 < 2 

(1.26) 

(1.27) 

(1.28) 

Thus, in view of (1.27) and (1.28), we attain our· desired 
inequalities : 

1 [ 8 2-(8+£)] 
- --+ <0, 0<8<2 and 0<£<2-8 (1.29) 
2 2-8 8+£ 

Finally using (1.25) and (1.29), we arrive at our sought result 

IIT(I,S)II 28 ~ ~CII<I,S)II 28 ~ 
e '2-(9+e) e '2-(9+£) 

(1.30) 

NOTE 1. If we use the following estimate forK, namely, 

c c I c I 
K< <--·--=--·---

- (lxl+ti/2t -lxl2-e te/2 jxf-e ti 2;9 

2-8 . 
with 0<--<It.e.,0<8<2,pi=p2 and qi=q 2, then 

2 
28 28 

we arrive at PI =- and qi = -- However, since 
8 2-8 

2 2 
0+1<pi <-(O+I) and O+I<qi <--(0+1), wefind 

8 2-8 

8 2-8 
--<8 and --<8 
2-8 8 

which is impossible if 0 <: 8 < 2 . yThis means that this method 
does not give a global solution. 

NOTE 2. From both cases I and 2 , we conclude that if we 

choose the initial data or observations such that llinitial datal! is 

small enough we will always have unique solutions. 

2. EXISTENCE AND UNIQUENESS OF GLOBAL 
SOLUTIONS, LONG RANGE DIFFUSION 
MODELING. 

2.1 Modeling long range diffusion with population pressure 
in planktonic patchiness. 

In this section we shall consider systems which include 
population pressure and long range diffusion. A model for 
long range diffusion with population pressure in planktonic 
patchiness will be considered below. It is known that the 
population pressure is directly proportional to some power a of 

the population density. That is, P = kua; where P is the 
population pressure, u is the population density, a is a real 

2 a a a number and k is a constant. The term L -;-P -;-P 
i=}OXj OXj 
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2 a4P 
represents the population pressure, and the term c L --­

. · 1 a 2a 2 
l,J= Xj Xj 

represents the long range diffusion, where c is a small constant. 

The system of equations we deal with are of the form 

~:; aP+ePm- bPmHn + V' · (uPcxVP) + V' · V'(cV'2P) (2.1.1) 

and 

a:= kPmHn -dHmV · (vHo:VH)+ V · Vl(lV2H). (2.1.2) 

We shall consider equations for which we assume 
homogeneity of dispersal rates. For simplicity, we shall 
consider a two-dimensional space; and let us take the values of 
{m,n} in (2.1.1) and (2.1.2) to be {1,2}, where m and n can 
take the values of either 1 or 2. 

Therefore, we get the following equations 

aP 2 a a 2 a4P 
-=aP+eP2 -bPH+uL_-Pa-P+cL_-

2
-

2
' 

at ;=I ax; ax; ;.j=laX; axj 
(2.1.3) 

P(x,O) = g(x), x E R 2 (2.1.4) 

and 

aH 2 a a 2 a4H - = kPH -dH2 +vL_-Ha-H + lL_-2- 2 at ;=I axi ax; i.j=laxi axj 
(2.1.5) 

H(x,O) = h(x), x E R 2 (2.1.6) 

Similar to what we did before, we consider only (2.1.3) and 
(2.1.4 ), since the treatment. of (2.1.5) and (2.1.6) is likewise. 
Now, observe 

(2.1.7) 

and using 

I a4p = A<2)p_ 
· · 1 a 2a 2 
I J= X· X· , I J 

(2.1.8) 

Thus, equation (2.13), and (2.1.4), and (2.1..5), (2.1.6), may be 
expressed as 

ap -cA(2) P = aP+eP2 -bPH +-u-A(Pa+1), 

dt . a.+ 1 
(2.1.9) 

P(x,O) = g(x), x E R 2 (2.1.10) 

and 

(2.1.11) 
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H(x,O)=h(x), xeR2. (2.1.12) 

Equations (2.1.9)-(2.1.12) now represent the model for long 
range diffusion with population pressure in planktonic 
patchiness. For equations (2.1.9) and (2.1.10) we introduce the 
same change of variables see [1], page 7 to eliminate the linear 
termaP. 

So, we let 

P(x, t) = eatp* (x, t) (2.1.13) 

Substituting (2.1.13) into (2.1.9) and (2.1.10), we obtain 

ap• -ctl<z>p• =e·e"'P"' -bP"H+-u-tl(P ... \ 
at a+l 

(2.1.14) 

p* (x,O) = g(x), x E R 2 (2.1.15) 

We may also assume population pressure in the first and 
second terms on the right hand side of (2.1.14). So, we may 

*~ *~+I 
write e = c 1P and b = c2P , where~ is a constant. 

Then (2.1.14) and (2.1.15) become 

ap·- cA(2) p* = c . e"' p·P•l- c p•P•• H +-u-A(P*""\ (2:1.16) 
at I 

2 <X+ 1 

p* (x,O) = g(x), x E R 2 (2.1.17) 

2.2 Solutions to long range diffusion with population 
pressure 

Now, by (2.1.16) and (2.1.17) we get 

* ~2 ~I U ~I 
P =K®(c1 ·eaP -ezP H)+-K®(&> )+K*g, (2.2.1) 

a.+1 

where p* is a weak solution of (2.1.16) provided that the 
integrals in (2.2.1) exist in the Lebesque sense. There K stands 
for: 

K(x, t) = t-112q,(xt-114 ), where KE Coo(R 2 ) 

(see Calderon and Kwembe ([3, p. 4]).) 

Using integration by parts on the term ~ ® (AP*~+I) in (2.2.1), 

we obtain 

* ~2 ~I U ~+I 
P =K®(c1·e31P -ezP H)+-r®P +K*g, (2.2.2) 

a.+1 

where 

(2.2.3) 

at *~+2 *~I 
For the first term K®(c1 ·e P -c2P H), the 

second term and the third term on the right hand side of 



MARW AN S. ABU AL-RUB 

equation (2.2.2), 'we shall use exponents r, p and q, 

respectively, when considering the I! norm. 

Using the same procedure we adopted before, K and r can 
be approximated as follows 

IK(x,t)l< c 2, t>O 

(lxl + tl/4) 
(2.2.4) 

and 

lr(x, t>l = I~KI s; c 4 . 

(lxl + tl/4) 
(2.2.5) 

First of all, we have to prove the following imbedding 
lemma for the initial data: 

Lemma2.2.1.If g E LP (R n) and IK(x, t)l s; c , t > 0, 

(lxl + tl/4 r 

n+4 
q(-) 

then K *gEL 4 

Proof. We have 

K*gs; f cg(y)dy . 

R" (1~-y,+tl/4r 

Let us first take the p norm in t, namely, 

ilK* gil s; f cg(y )dy 

p R" (lx-yl+tl/4r 
p 

Apply the Minkowski's integral inequality on the right hand 
side of the of the above inequality, we obtain: 

1 

ilK* gil s; c f lg(y)i[ f dt Jpdy 
p R" R+ (lx-yl+tl/4rp 

where a is a constant. 

Now, by taking the q norm in x of the above inequality, we get 

27 

ilK* gil s; ca J lg(y)ldy 4 

R" (lx-yl+tl/4 r-p 
q 

The right hand side of the above inequality is less than or equal 

to Cllgllq , if _!_=_!_-~(using the Benedek-Panzone 
p q np 

Theorem). And this implies that p = q( n: 
4

) which completes 

the proof of Lemma 2.2.1. 

We now have three things to consider. 

First. For the initial data in (2.2.2), if g E Lq , then 

K * g E L 3q ; and this results directly from Lemma 2.2.1 with n 

=2. 

Second. For the first term in (2.2.2), we have 

from which we arrive at, 

I 13+2 4 13+2 2 r 3 
-=-----=----·I<--<-. 
q r 2+4 r 3' 13+2 2 

(2.2.6) 

Setting r = q in (2.2.6), we have for the equality relation that 

2 
r = -(13 +I) 

3 

By (2.2.6) and (2.2.7), we have 

3 3 
13 + 2 <- (13 +I)<- (13 + 2) 

2 2 

Therefore, ~ (13 +I)> 13 + 2 gives 
2 

13>I 

Third. For the second term in (2.2.2), we have 

c c 
1r1 = I~KI s; 4 = 2+4-2 • 

(lxl + t 114) (lxl + t 114) 

so 

I a+ I 2 
-=-----
q p 2+4 

Thus 

I a+l I p 
-=----; I<--<3. 
q p 3 a+I 

Setting p = q, we get 

(2.2.7) 

(2.2.8) 

(2.2.9) 
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p = 3<x 

By (2.2.9) and (2.2.10), we obtain 

a+ 1 < 3<x < 3(a + 1). 

Therefore, 3<x > a + 1 gives 

1 
a>-

2 

Now. to get a contraction mapping 

LP (R 2 x R+) -+ LP (R 2 x R+) 

(2.2.10) 

(2.2.11) 

m (2.2.2), we have to equate all the exponents in K * g e L 3q 

(2.2.7) and (2.2.10). That is, 

3q=~(~+1)=3<x 
2 

In view of (2.2.7), (2.2.10) and the above relationship we 
arrive at 

p = 3<x, q = a, and r = 3a (2.2.12) 

Consequently, the following relationship exists between a and 

~: 

.~=2a-l. (2.2.13) 

Hence our mapping in (2.2.2) will be 

That is. if we apply the mapping T to (2.2.2), we have 

T(w)=-u-r® w<x.+1 + K®G+ K *g 
(l + 1 

where 

then 

(2.2.14) 

(2.2.15) 

(2.2.16) 

Here f is an auxiliary function which is the sum of the second 
and the third terms in the right hand side of equation (2.2.14). 

Now, (2.2.16) should be compared with the mapping 

y = yxa.+1 + 11. (x ~ 0), (2.2.17) 

where 'Y and 11 are positive constants. 

Now, yxa.+1 increases faster than a linear function and it is 

convex. For n = 0, we have only one non-zero root of (2.2.17) 

because the graph of y = yxa.+1 andy= x will intersect in only 

one non-zero point. For the same reason, if 0 < 11 < Eo 

(where £0 is sufficiently small), we have two roots. 
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Let x1 be the smallest root, then y(x) :5: x whenever 

0 :5: x :5: x 1 . This implies that liT( w )II :5: x 1 , whenever llwll :5: x 1 , 

where 

T(w) =-u-K®wa.+1 +f. 
Cl+ 1 

Thus, if x 1 is small enough, then the mapping T( w n ) will 

be a contraction mapping which maps the ball of radius x1 into 

itself (see [3]). This will show that the solution to our equation 

w = T( w) in (2.2.14) with w = (P *,H) ,-exists and is unique 

in the ball of radius x1 . Here x1 depends on the size of the 

initial-data. 

2.3 Long range diffusion modeling 

A careful modeling of. long range diffusion should result in 
an equation of the form: 

an -c &t+c A<2>n+L +c A(m)n 
at - 1 2 m ' 

where 

a2 a2 
A=--+--, 

ax? ax~ 

(2.3.1) 

(2.3.1) 

n = n(x, t) is the population density function, ci's are constants 

for i = 1, ... ,m; m is a positive integer greater than 2, and 
x = ( x 1 , x 2 ) . The appearance of powers of the Laplacian 

should be consequence of isotropy and invariance under 
rotation considerations. For instant (see Othmer [6], pp. 166-
168) and (Murray [5], pp. 244, 245). The question which arises 
here is that in (2.3.1), where should we stop? .i.e., up to which 
degree of m? We believe that the answer to this question 
depends on the nature of the material or the population density 
function we are dealing with. The degree m in (2.3 .1) is a 
consequence of the fact that the flux - j = G(V'n(x, t)) , where 

G is a functional of V'n , is a distribution on the space test 
functions V'n(x, t) over a fixed neighborhood of a point x. 

This is the reason why we stop after a finite number of terms 
because distributions have finite order. To solve equation 
(2.3.1 ), analogous results can be obtained as in section 2.2 for 
the case where m = 2. So, for (2.3.1) we consider the following 
estimate for the Kernel, namely, 

where c is a constant , 2 is the dimension, t >0 and 

1 1 
-- --

IK(x, t)l :5: t m<!>(xt 2m). 
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