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ABSTRACT 

We study a simple time series model the noise properties of the proposed model are 

derived. An algorithm based on the conditional mean and the conditional variance, for esti­

mating the parameters of the proposed model is suggested. This model is then applied on 

the sunspot time series. It seems from this study that the proposed mixed model gives very 

encouraging results in applications. 

Key Words : Conditional mean, Conditional variance, General solution, Stationarity, Sun­

spot time series. 

INTRODUCTION 

During the last few years, many classes of 

time series models, linear and non-linear, have 

been proposed (see in particular Tong [1]). For 

simplicity, we consider in this paper the first order 

case, then, most of these models can be written in 

the general form in which the noise term is addi­

tive. 

Let Md (x) = E(Xt \ Xt-d = x) be the condi-

(1) 

where g is known function, e is an unknown vec­

tor parameter and [Zt] is. a sequence of indepen­

dent and identically distributed random variables 

with E (Zt) = 0, 
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tional mean of xt given xt-d = X. The conditional 

variance of Xt given Xt-d = X is defined as : 

2 2 
V d(x~ = Var (xt \ xt-d = x) = E(Xt \ Xt-d = x)- Md (x). 

Then it is clear that for model (1) we have M 1 (x) 

= g(x;S) and V 1 (x) = cr z. 

If the noise term is multiplicated, the model 

can be written in the form 

( 2 ) 
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where h is a known positive function. The ARCH 

model of Engle [2] is a special case of this model 
. I 

w1th h cxt_ 1 ; 8) = (8 1 + 82 xt_ 1) 12 

For model (2) we have M 1 (x) = 0 and 

V 1 (x) = h (x ; 8) 

If models ( 1) and (2) are combined in one 

model, called a mixed model then the model can 

be written as 

Xt = g(Xt_ 1 ; 8) + h(Kt_ 1 ; 8)Zt, h > 0. (3) 

For the last model we have 

M 1 (x) = g( x ; ~ ) and V 1 (x) = h2 ( x ;_8 ) a~. 

It is observed practically that most real time 

series have non-constant conditional mean and 

non-constant conditional variance. Also time series 

with a changing conditional variance have been 

useful in many applications (Li and Mak [3]). 

Hence, model (3) seems to be very reasonable in 

many applications. 

In this paper we consider the following model 

and we call it a Mixed markovian (MM) model. 

Xt =a+ bXt_ 1 + cXt_1 Zt + Zt, (4) 

where a,b and c are unknown constants. This mod­

el can be written in (3) form with 

g(x ; s) = a+bx and h(x ; s) = ex + I. 

This paper is devoted to study some of the 

theoretical properties of the MM model ( 4) as well 

as their applications. 

THEORETICAL PROPERTIES 

In this section we give some of the main pro­

babilistic properties of the MM model (4). Details 

about the complete proofs of the following theo­

rems are given in the appendix as well as in the 

M.Sc. thesis of the second author [4]. 

THEOREM 1 (MOMENTS) : 

Let { Xt} be generated by the MM model then 
the mean, variance, autocovariance function, auto­

correlation function and the normalized spectral 

density function of Xt are, respectively given by 
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i.E [Xt] = 11x =a I (1-b) lbl < 1 

2 2 2 2 
(a c + 2ac + 1 + b - 2b- 2abc) a z 

= 
2 2 2 2 

(1-b) (1-b-caz) 

; lbl < 1 

lkl 
iii. Cov (Xt, Xt+k)= yk = b yo;k = 0, ±1,±2, ... 

; k=O, ±1 ,±2, ... 

1-b
2 

v. f (w) = 
2 

' - 1t w'/. 1t 

2rr (1-2b cos w+b ) 

Note: 

From (ii) we note that the condition for 
2 2 2 .. 

Var (Xt) > 0 is that b + c a'/. < 1. Also It IS easy 

to show that 

3 
E[Xt] = 

3 2 2 2 2 
a+ 3ab 11 2 + 3ac 11 2 az + abc 11 2 az 

2 2 2 
[ 1 - b ( b + 3c a z) ] 

c111 az + 3a az 
+ 2 2 2 

[1-b ( b + 3c a z) ] 

where 11t = 11x =a I (1-b) and 
2 2 2 2 222 

11 2 = (Xt) = [a+ 0' z + (2ab + 2c 0' z)] I ( 1-b - c 0' z). 

Hence the condition of existence of the third order 

central moment of this process is that 11 2 exists and 
2 2 2_ 

b(b + 3c a z) :t: 1. 

THEOREM 2 (GENERAL SOLUTION) 

The general solution of the MM model is given by 

t t t 
X = L (a+ Z·) n (b + cZ.) + n (b + cZ;) Xo. 

t . I . . 1 J . I I=l J=I+ l = 

THEOREM 3 (STATIONARITY) 

The necessary and sufficient conditions for the 

process { Xt} generated by the MM model to be 

second order (weakly) stationary are that 
2 2 2 

b + c a z < I and lbl < I . 
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THEOREM 4 (EXISTENCE) 

Assume that Zt is almost surely (a.s) not a line-
2 2 2 

ar function of Zt" If lbl < 1 and b + c crz < 1 then 

there exists a unique strictly stationary process 

{Xt}, satisfying (4), and given by 

with the infinite series being almost surely conver­

gent. 

THEOREM 5 (PROBABILITY DISTRIBUTION) 

Let { Xt} be generated by the MM model and 

assume that Xt has a probability density function 

(p.d.f) f (x) for all values of t=1,2, ... Let Zt has 
xt 

a p.d.f f (z) for all values oft= I ,2, .... Then 
zt 

f (x) satisfies the following integral equation 
xt 

f (x) = J_I_+_cy_ 
xt 

f (z) f (y) dz 
zt xt-1 ac- ex- b 

Note: 

From THEOREM 5 we note that the p.d.f of Xt 

generated by the MM model has a singularity 

point at x = a - b/c i.e. 

f (x) ~ oo as x ~ a- b/c. 
xt 

THEOREM 6 (PREDICTOR) 

Let Xt generated by the MM model than the 
1\ 

kth-step ahead predictor of xt ' xt+k ' is given by 

" a( 1 - bk) + bk X 
xt+k = t k = t ,2, ... 

(1 - b) 

1\ 

with Xt = Xr The mean square error of prediction 
, 1\ 2 

is given by cr k = E [(Xt+k- Xt+k) 1 

d c2 
+ 2ac

2 
+ 1 + b - 2b .- 2abc) (1 - b2k) cr; 

= 2 2 2 2 
(1-b) (1-b-ccrz) 
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ESTIMATION OF PARAMETERS 

·Let { Xt ; t= 1 ,2, ... , n} be a realization from a 

time series { Xt}. Our problem now is to fit a MM 

model to the data. Because the probability distri­

bution of { Xt} is unknown, we cannot use the usu­

al maximum likelihood method to obtain estimates 
2 of model parameters a, b, c and cr z· Also, because 

the noise term in the model is non-additive, the 

classical least square method cannot be used in es­

timating in the unknown parameters. In this paper, 

we describe a new algorithm to obtain estimates of 

model parameters. This algorithm is based on the 

use of the conditional mean and the conditional 

variance. 

Let {Xt} be a completely stationary time series 

with a joint probability density function of xt-d 

and Xt' ft-dXt (x,y), d is a positive integer. 

First we consider the following kernel estimate 
j 

of E(Xt\Xt-d = x) (Thanoon, [5]). 

n . 

" j I:i=lxJ K{(x-\)/S} 
E [Xt \ xt-d =X 1 = n ;j=l,2, ... 

I:i=l K{ (x-xi)/S} 

where K(.) is a kernel (window) function which is 

a non-negative function on R with f K(u) du =1. 
R 

In this paper we use the well-known Bartletts (tri-

angle) window which is defined by K(u) = 1 - lui ; 

for lui 1 and K (u) = 0 ; otherwise s is a smooth­

ing parameter. Here the standard deviation of the 

data is used as the smoothing parameter. Then the 

Md (x) and V d (x) can be estimated respectively 

as follows : 

1\ 1\ 

Md (x) = E {Xt \ Xt-d = x} and 
1\ 1\ 2 1\ 2 

V (x) = E {Xt \ Xt-d = x} - Md (x) 

Consider first the MM model and note that 
2 

M1 (x) =a+ bx and v 1 (x) =(ex+ 1) crz. 

Hence, if we assume that Y t = Xt I cr z (i.e. by di­

viding the R.H.S. of the MM model by cr i), then 

we get 
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Var (Yt \ Xt_ 1 = x) = (ex + 1). Therefore, we can 

assume without loss of generality that the noise 

variance is equal to unity. 
1\ 1\ 1\ 

We can estimate a, b and c by setting M
1
(x) = 

1\ 1\ 

M 1(x) and V 1(x) = V1(x) where M 1(x) =a+ bx, 

V 1 (x) = (ex + 1) and M1 (x), V 1 (x) are the kernel 

estimates of M 1 (x), V 1 (x) ; respectively. By solv­

ing these two equations, at some given values of x, 
1\ 1\ 1\ 

we can obtain estimates of a, band c, respectively. 

The noise variance can then be estimated in the 

usual way 

A 2 n A A 2 
az= L (Xt-a-bX

1
_1)/(n-3). 

t=2 

AN APPLICATION (SUNSPOT SERIES 1700 -1920) 

Let {Xd denote the annual mean of Wolf's 

sunspot numbers for the year 1699+t = 1 ,2, 

221. The following SETAR (2;4, 12) model was 

fitted to the data by Tong and Lim [6] : 

10.54 + 1.69 xt_1 - 1.16 xt_3 + 0.15 xt_4 + zt 

xt_3 36.6 

x _ 7.80 + o.74 xt-l - o.o4 xt_2 - o.o2 xt_3 + o.17 c 
xt_4 - 0.23 xt_5 + 0.02 xt_6 + o.16 xt_7 - 0.26 

xt_8 + 0.32 xt_9 - 0.39 xt_ 10 + 0.43 xt_ 11 -

o.o4 xt_ 12 + zt. xt_3 > 36.6 

1\ 2 1\ 2 
where a z = 254.6 and a z = 66.8 

Gabr and Subba Rao [7] have fitted the follow­

ing subset bi linear, SBL, model to this data set 

xt- 1.5012 xt-l + 0.767 xt_9 - 6.8860 =- o.0146 

xt_2zt-l + o.oo63 xt_8 zt-l - o.oon xt_4zt_3 + 

o.0061 xt_4zt_3 + o.0036 xt_1 zt-s + o.0043 xt_2zt_4 

+ 0.0018Xt_3 zt-z + zt, 

where Var (Zt) = 143.33 

Thanoon and Sofia [8] suggested a threshold­
bilinear TBL, model and fitted their model to the 
same data. The fitted model takes the form 
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2.8357 + 1.9767 xt-l - 1.3805 xt_2 + o.o945 

xt_3 - 0.1178 xt_4 + 0.3654 xt_5 - o.oo32 

xt_ 1 zt_1 - o.o593 xt_2zt-l - o.0776 xt_3zt_ 1 

- o.o5o2 xt_4 zt-l + o.0225 xt_5 zt-l + zt 

xt_3 36.6 

7.8 + 0.74 xt-l- 0.20 xt_3 + 0.17 xt_4 -

0.23 xt_5 + o.o2 xt_6 + 0.16 xt_7 - o.26 xt_8 

+ o.32 xt_9 - 0.39 xt-l 0 + 0.43 xt_ 11 - o.o4 

xt-12 + zt 

where Var (Zt) = 98.2 

Applying the suggested algorithm in the last 

section, the following MM model is identified 

xt = 7.6145 + 0.7932 xt_ 1 + 0.3243 xt_ 1 zt + zt, 

where Var (Zt) = 5.1949. The following table giv­

en a comparison between these three models. 

* 

Table (1) 

A comparison between the fitted models for 

sunspot series 1700 - 1920 

Model No. of Par. Res. Var NAIC 

SETAR 18 153.70 5. 197 

SBL 11 143.33 5.065 

TBL 24 98.20 4.804 

MM 3 5.19 1.675 

NAIC = [n in (Residual variance) + 2k] n, 

where n is the number of (effective) data and k is 

the number of parameters. 

CONCLUSIONS AND DISCUSSIONS 

The studied model in this paper gave very en­

couraging theoretical and applied properties, one 

of the main interesting theoretical properties is 

that their conditional mean and conditional vari­

ance are both non-constants. 
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The residual variance and the NAIC value ob­

tained from the fitted MM model are much lower 

than those of all other fitted models to the same 

time series (see Figure (I)). The reduction in the 

residual variance from using the MM model rather 

than the SETAR, SEL and TBL models is 2859% 

and 1790% ; respectively. The same conclusion is 

drawn with other data sets (see the M.Sc. thesis of 

the second auther [4]). Hence we suggest further 

studies in the direction of these models. In particu­

lar, we suggest to study the generalization of the 

studied model in this paper which has the general 

form 

X
1
=ao+a

1
X

11
+ ... +aX +(b0 +b 1X 1 + ... bX )Z, - q t-q t- r t-r t 

where bo = 1 

APPENDIX 

PROOFS AND THEOREMS 

THEOREM 1 

Let X
1 

be second order stationary than 

i. E[X
1
] = 11 = a + b!l + 0 + 0 

X X 

i.e. 11 (1 -b)= a ==> 11 =a I (1-b), 
X X 

ii. Squaring (4) and taking the expectation, we get 

2 2 2 2 2 2 2 22 2 2 
E[X

1
] =a+ ab I (1-b) + bcrx + ac I (1-b) crx 

222 2 2 2 
+ c cr cr + cr + 2ab I (1-b) + 2ac I ( 1-b) cr 

X Z Z , X 

2 2 2 
Then cr = E (X ) - 11 • 

X t X 

iii. Similar to ii. 

iv. Px = Yk I Yo 
I oo 

v. f(m) -- [ 1 + 2 L pk cos (rok) 1 
21t k=l 

00 

21t 
[ 1 + 2k~1bk cos (mk) ] 

21t 

21t 
[!+2R( )] 
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f(m) = 
2 

1- 2b 

2 
2 ( 1 - 2b cos (l) + b ) 

THEOREM2 

Rewrite (4) in the form 

X
1 

= a + (b + cZ
1
) X

1
_

1 
+ Z

1 

Now X
1 

= a + (b + cZ1) Xo + Z1 

X
2 

= a + (b + cZ2) X1 + z2 

(I) 

= a + (b + cZ
2

) [ a + (b + cZ 1) Xo + Z 1] + Z2 

=a+ a(b+cZ
2
) + (b+cZ1)(b+cZ2) Xo+ (b+ cZ2)Z1 +Z2 

in general we get 
t t t 

X = L a IT (b+cZ.) + IT (b+cZ.) Xo 
t i=l j=i+l J t=1 I 

t t 
+ L Z. IT (b+cZ.) 

i=l I j=i+l J 

And hence 

t t t 
X = L (a+Z.) IT (b+cZ.) + IT (b+cZ.) Xo 

t i=l I j=i+] J i=l I 

THEOREM3 

The first condition that b 
2
+ c2cr~ < 1 is neces­

sary for the variance to be positive (THEOREM 1). 

The second condition that lbl < 1 can be obtained 

also from THEOREM 2. Since 

t 

rr 
j=i+l 

and 

t 

= bt-i-l + other terms 

IT (b+cZ.) = (b+cZ1 )(b+cZ2) ... (b+cZt) 
t=1 I 

= bt +other terms 

c I bt-i-1 d bt Hence, .or arge t, an are covergent 

only if lbl < 1. 

THEOREM4 

The representation can be obtained in a similar 

way to THEOREM 2. The covergence can be 

proved by using Jensen's inequality and the strong 

law of large numbers. 
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If we rewrite ( 4) in the form 

The distribution function of Xt is defined as 

F (x) = p (Xt x) 
xt 

= p [a+ bXt-l + (cXt_ 1 + l)Zt x] 

= f p [Xt X \ Xt_1 = y) f (y) dy 
Y xt-1 

= f p [a +by +(1 + cy)Zt x] f (y) dy 
y ~1 

= f (Z x - a - by f ( ) d 
yP t 1 + cy xt-1 y y 

x- a- by 
f (x) =dF (x)/dx = d/dx f -1( )f (y) dy 
xt xt zt 1 + cy xt-1 

x- a- by Letz= __ ..;... 
I +cy 

hence 

f (x) = fy f (z) __ 
xt zt 1 + cy 

f {y) (1 +cy) dz 
xt -1 ac-cx -b 

f {x) = fy 
xt 

I +cy 
ac-cx-b 

THEOREM6 

2 

f {z) f (y) dz 
zt xt-1 

It is well known that kth step - ahead predictor 
1\ 

of Xt, Xt+k is the conditional expectation of Xt+k 

given xt' xt-1' ... 

i.e. xt+k = E [ xt+k \ xt, xt-1' ... J. 
1\ 

Now xt+k = E [ xt+k \ xt, xt_1, ... J 

= E [(a+ bXt+ cxtzt + zt+1)t xt, xt_1, ... ] 

=a+ bXt 

Xt+z = E [ Xt+z \ Xt' Xt-1' ···] 

= E [(a+bXt+1+cXt+1zt+2+ Zt+2\Xt, xt-1' ... ] 

=a+ bE [Xt+1 \ Xt' Xt_ 1, ... ] 
1\ 

=a+ bXt+l 

Hence, in general we have 

; k = 1, 2, ... 

By successive substitution in the last equation 
we get: 
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1\ 2 k 
xt+k = a +ab + ab + ... + b xt 

which can be written in the form 

1\ k k 
Xt k = a(l - b ) + b X ; k = 1 , 2, ... 

+ (I -b) t 
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Figure (1) A comparison between the fitted models 

for sunspot series (1700 - 1920). 


