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ABSTRACT 

Let en(T) and an(T) be the entropy numbers and approximation numbers of operator T 
between Banach spaces, respectively. Let ~ p be the operator ideal defined by 

~p := {TEL;{ en(T)} Elp}, 
and Sp be the operator ideal defined by 

Sp := { TEL; ~an(T)P<oo} . 
Then if O<p<l, and 1.;;;;u, v.;;;;oo we have Sp(lu, lv)~~p(lu, lv). 
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Introduction 

In [1] the quasi-normed ideal tp has been introduced. The relation between tp and Spin 
Hilbert spaces has been studied and it has been found that [1] Sp(l2 ) 2) = tp(l2 , 12 ) for all 
exponent O<p<oo. In particular, t 2 (12 , h) is the ideal of Hilbert-Schmidt operators. 
In Banach spaces a little is known about the relation between t p and Sp [I] . The re1a­
tion between tp and the ideal of p-nuclear operators Np, O<p<1 has been previously 
estimated f7]. 

This work investigates the relation between tp(lu,lv) and Sp(lu,lv) for all exponents 
O<p<I. 

Basic Notations 

In the following L denotes the class of all bounded linear operators between arbitrary 
Banach spaces and L(E,F) the set of all such operators between specific Banach spaces 
E and F. The closed unit ball of E is denoted by U and ofF is denoted by V. Ln (E, F) 
denotes the subspace of L (E, F) of operators of rank (T) < n. Let lu denote the Banach 
space of all u-absolutely summable sequences provided with the norm 

llxllu = {r l~ilu} 1/u if 1:s:;;u<oo 

and 
llx II= sup l~il if u= 00 

respectively. 
We mention that the ideals of entropy numbers, of p-nuclear and of approximation 

numbers are denoted by [tp, Ep], [Np, vp] and [Sp, ap], respectively ([1, 4], [2, 3] 
and [5, 6] ). 

Main Result 

Our main result can be obtained through a series of theorems. We begin with a result of 
Pietsch [ 6] . 

Theorem 1 
Each mapping T E Sp (E, F) with 0 < p :s:;; I can be represented as 

Tx = ~ Ar (x,ar) Yr 
rER 

with linear forms ar EU
0 

and elements y rEV, such that the inequality 

~~ \\ \ P~ l/p :s:;;22+3/p ap(T) 

holds for the numbers \ 
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In the next theorem we need the well-known Auerbach's lemma. 
Lemma: Let M be an n-dimensional normed linear space. Then there exists a basis 
~x 1 , ... , xn ~forM and a subset~ u1 

1
, ••• , un

1 ~of M1 
(the dual of M) such that 

n I 

x = . ~ (x,ui) Xi for each xEM, 
1=1 

with lluill = llxi II= 1 and <xi, U
1
j)= Oij, i,j = 1, 2, ... , n. 

Theorem 2 
Let E and F be Banach spaces, and O<p< 1. Then we have 

Sp (E, F) C Np (E, F) 
and 

Pp (T) ~ 22 +3/P ap (T) for each TESp(E,F). 

Proof· By definition of approximation numbers, for n = 1, 2, ... there exists an 
An E L Jl-1 (E,F) such that 

liT-An II~ 2a 2~ 1 (T). 
We now put 

and 

Bn = An+1 - An , 
dim R(Bn) = dn (R (Bn) denotes the range of Bn), 

r 
io = 0, ir = n~1 dn 

. lr= ~theintegersin[nr- 1 +1,nrJ(, r=1,2, ... 
fhen, since the sequence) aj (T)t is decreasing, we have 

IIBnll ~ 4a " (T) 
2-1 

And since 

dn<2n+I- 1 +2n- 1 <2n+ 2 
, we have 

ir<23 (2r-1)<23 +r, f"-'1,2, .... 

By Auerbach's lemma, there exist ~ uh ~ C F 
1 

and ~ Yn ~ C R (Bn) 
1 n E Ir n Elr 

such that II un II= 1, II Yn II= 1 and 
~ I } 

BrX = nElr <Brx, Ufi Yn, r = 1, 2, .... 
for each xEE. Putting 

xh = B~ uh/ II Br. u~ II , 

An=IIB~u~II~IIBrll fornElr, r=l,2, ... , 

we have 

Brx = n~Ir An (x,x~) Yn, r = 1, 2, ... 

By making use of these sx~ ~ . Syn ~ , r = 1. 2 .... , we can write 
~ S n E 1 r ~ S nE 1 r 
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Tx = lim Ar+t x 
r-+oo 

00 

00 

~ B X 
r=I r 

= ~ ~ Xn (x, x~) Yn for each xEE, 
r=I nEir -

with llx~ II= I, llyn II= I, n =I, 2, .... Therefore, for O<p.:;;;I, 
we get 

Svp(T) l P.:;;; i;' ~ \xi lp :s:;;; 'i ~ liB liP 
? ~ r=l nEI r=I nEI r r r 

.:;;; ';; 2r+z ( 4 a r (T) )P 
r=I 2-t 

Hence 
vp(T) .::;;22 +3/p ap(T) 

which finishes the proof. 

_Theorem 3 

Let O<p.:;;;I. Then there exist diagonal operators D from Iu into Iv such that 
DENp(Iu, lv) and DE;i:Sp Ou,Iv). 

The following example shows that the above theorem is true 

Example: Let Ak = I/k- I/(k +I)= I/k(k +I) and define an operator 
TEL(~, l1) by T ~~it := ~Xi ~it . 

Since 

00 00 00 

~ A_P = ~ I/(k2 +k)P.:;;; ~ I/k2 P < oo ,for 1/2<p.:;;; 1, 
k=1 k k=1 k=1 

then T is p-nuclear, 1/2 < p .:;;; 1. 
But we have 

00 00 00 

a1(T)= -~ ~ (I/k-1/(k+1))= ~ 1/(n+l)=oo, 
- n=O k=n+l n=O 

which proves that 'F ¢ S1 (100 , It). SoT tf. Sp (I 
00

, 1 t) for every O<p.:;;;l, [5]. 

Theorems 2 and 3 prove the following 
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Theorem 4 
Let 0 < p ~ I. Then 

Sp Ow lv)<;NpOu, lv) 

It is known that Np (12 , 12 ) is identical with Sp (12 , h) for 0 < p .;;;;; l, [3] 0 

The relation between Np Ou, lv) and ~p (lu, lv) for 0 < p <I has been investigated in 
[7) 0 However, we state the main result of [7) as 
Theorem 5 
Let 0 < p < I. Then 

Np Ou, lv) = ~p Ou, lv)o 

As a consequence of theorems 4 and 5, we get 

Theorem 6 

Let 0 < p < I. Then 

sp (lu, 1v) ~ ~p {lu, 1v) 

This result answers problem raised in [I] in case 0 < p < l. 
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