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ABSTRACT

Let en(T) and ap(T) be the entropy numbers and approximation numbers of operator T
between Banach spaces, respectively. Let ¢ p be the operator ideal defined by
§‘p = { TEL; {en(T) } €lp } ,
and Sp be the operator ideal defined by
Sp :={ TEL; Zap(T)p<e} .
Then if 0<p<1, and 1<y, v<Le> we have Sp(lu, lv)gfp(lu, ly).
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Introduction

In [1] the quasi-normed ideal §p has been introduced. The relation between {p and Sp in
Hilbert spaces has been studied and it has been found that [1] Sp(1.15) = §p(l, 1) for all
exponent O<p<ee, In particular, {,(1,, 1) is the ideal of Hilbert-Schmidt operators.
In Banach spaces a little is known about the relation between {p and Sp [1]. The rela-
tion between {p and the ideal of p-nuclear operators Np, O <p<1 has been previously
estimated [7].

This work investigates the relation between {p (lu,lv) and Sp(lu,lv) for all exponents
0<p<1.

Basic Notations

In the following L denotes the class of all bounded linear operators between arbitrary
Banach spaces and L(E,F) the set of all such operators between specific Banach spaces
E and F. The closed unit ball of E is denoted by U and of F is denoted by V. Ly, (E, F)
denotes the subspace of L (E, F) of operators of rank (T) < n. Let l;; denote the Banach
space of all u-absolutely summable sequences provided with the norm

Ixly = {% 15 u} Huif 1<u<eo
and

Ix I = sup Igil if u=o0
respectively,

We mention that the ideals of entropy numbers, of p-nuclear and of approximation

numbers are denoted by [{p, Ep], [Np, vp] and [Sp, Gp] , respectively ([1, 4], [2, 3]
and [5, 6]).

Main Result

Our main result can be obtained through a series of theorems. We begin with a result of
Pietsch [6].

Theorem 1
Each mapping T€Sp (E, F) with O<p<1 can be represented as

Tx = réR A &xa)dy,

with linear forms arEUo and elements yrEV, such that the inequality

3% ')‘r ‘ pi P <l op(T)

holds for the numbers )‘r
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In the next theorem we need the well-known Auerbach’s lemma.
Lemma: Let M be an n-dimensional normed linear space. Then there exists a basis
3x, s xn§ for M and a subset 3u1 o, un'$ of M’ (the dual of M) such that

n
x= .21 (x,u) xj for each xEM,
i=

with lujll= Ixjll=1 and ¢xj,u')> =65, 1,j=1,2,...,n

Theorem 2

Let E and F be Banach spaces, and O<p<1. Then we have
Sp (E,F) CNp (E, F)
and

vp (T)< <2*fP o p(T) for each Tes, p(E.F).

Proof: By definition of approxunatlon numbers forn=1,2,. ‘. there exists an
AL€L2, (EF) such that

I T-Ap 1< 2‘12,,_1 (T).
We now put
Bn=An+; - Ap,
dim R(Bp) = dp (R (Bp) denotes the range of By) ,
r
i,=0,i =n§I d,
and
Iy = 3the integersin [np-y + 1,n]¢ , r=1,2,
Then, since the sequence § a; (T)é is decreasing, we have
iByll<4a , D
And since
dn<2n+l -1+2%-1<2™? | we have
<2 (2" - <2, ra1,2,... .
By Auerbach’s lemma, there exist 3u}12 CF'and 3yn2 CR(Bp)
such that luj =1, lypl=1and Ir n €l
Brx=n§1r<Brx,u§1>yn, r=1,2,....
for each x€E. Putting
xn=Brup/ 1 Brup I,
An=IBrun I<IB(l forn€l;, r=1,2,...,
we have

z )
Brx:nElr MA{xxnpdyn, r1=1,2,....

By making use of thesegxﬁinelr.gyng nel,’ r=1,2,..., wecan write

12




Tx =1lm A x = EBx

roo I r=1 |
=Z T adix,x") for each x€E, ‘
r=1 n€l_- n n’Yn
with lxp 1= 1,lya =1, n=1,2, ... . Therefore, for 0<p<l,
we get
W. oo
v (T) ) P< z IanP<z B_||P
o 1< 2 ner, 11 =1 n€l, Bl
o0
<z 2™ @a, (M)P
r=1 =
oo 21’_
<22P 3 3 ga (T)sp
r‘-l q_zr_
< 73+2D P
Hence

vp(T) <2***/P o,,(T)
which finishes the proof

Theorem 3
Let O<p<1. Then there exist diagonal operators D from 1y into ly such that

DENp(lu, Iv) and DESp (1y,ly).
The following example shows that the above theorem is true

Example: Let A = 1/k - 1/(k + 1) = 1/k(k + 1) and define an operator
TEL (o 1) by T = &3}
Since

2 A = Z 1/(k2+k)p k§1 1/k?P < o for1/2<p<1

then T is p-nuclear, 1/2<p <1

But we have
6, (T) = 20 o (I/k- 1/(k+1)) = A 1/(n+1) = oo,

which proves that T ¢ 81 (loos 1) - So T € Sp (14, 11) for every O<p<1, [5].
Theorems 2 and 3 prove the following
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Theorem 4

Let O<p=<1. Then
Sp (lua IV)ng(lu’ lV)

It is known that Np (1,, 1,) is identical with Sp (13,1;) for O<p<1, [3].
The relation between Np (ly, Iv) and {p (ly, ly) for O < p < 1 has been investigated in
[7]. However, we state the main result of [7] as
Theorem 5
Let O<p< 1. Then

Np (lu, Iv) = $p (lu, Iv).
As a consequence of theorems 4 and 5, we get

Theorem 6
Let O<p<1. Then
Sp (1) G801 -

This result answers problem raised in [1] in case 0 <p <.
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