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ABSTRACT

In this paper we study the inverse problem on the half line for a generalized stationary one dimensional Schrédinger
equation. We consider the solutions of the differential equation and study its properties. Given the spectral distribution function,
we solve the inverse problem.
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INTRODUCTION u(0)=0 )
Consider, in the space L, (0, ; p(x)), the generalized We assume that
stationary Schrédinger equation
a2 p(x)= {ai,an_ISXSan;n:l,...,m 3)
{E—Q(x)+lp(x)}u=0 (1) 1 a, <X<®©

where a,> 0, a,= 0, o, # Oy, O 7 1 and A is a constant.
and Let W, be the set of functions p(x). Also denote with L, ;
the class of potentials




Inverse Scattering Problem

L1,1={q|q=a,j x|q<x>|dx<oo} “

0

The inverse problem can be stated as follows: knowing
the spectral distribution function of (1)-(2), can we
reconstruct equation (1), i.e., can we determine the
potential q(x) and the density function p(x)? The
boundary value problem (1), (2) was discussed in [1, 2, 5,
8] for the case p=1 and u(0) = 0, on the coefficients was
investigated in [4, 9, 11]. In [12} the inverse problem of
(1), (2) was investigated using the scattering data by
employing the technique of the speciral distribution
function.

. Preliminaries

In this section, we give some results for the case p(x) e
W, which will be used in the subsequent sections. Denote
with ¢(x,A), x €[0, a;] the solution of equation (1) which
satisfy

¢(02)=1,¢(0,1)=0 &)
and with (x,}) the solution of (1) which satisfy
wOA) =0,y (01 =1 (6)

To obtain these solutions, we shall use the results of {7,
8]. Let p(x) € Wy; oy = o,a9 = 0, and q € L), then we
have

$(x, A) = cos v Aax) + f A(x, t)cos(JAat) 0<x<a,
0

Q)

where the kernel A(x,t) has summable derivatives A,, A,,
and

dA(x,x) 1

6A (X, t)
— (X and

% |t=0=

This solution ¢(x,1) is an entire function of /1 for any
fixed o.. Moreover

¢(x,l)=cos(\/zax)[l+0( ]as Imﬁz 0, |\/Il—>oo

1,
Ji
Uniformly with respect to 44 on [0,a,]

The second solution y(x,1) of equation (1) is given by

o] B SR 4oy
Aa 1
0

N

sin(VA ax)
Jia

y(x,A)=

®

202

where the kernel B(x,t) has summable derivatives B,, B,
and

4B(x.x) 1 %) and Bx,0)=0
dx 2

This solution w(x,A) has also the property that it is"an
entire function of \/I for Im \/'}T 20,! \/I ‘ —> 00,

Moreover
‘ sin(ﬁax) 1 J
X AD)=—F——|1+0(—)
S [ 7
uniformly with respect to \/—/{ onf0,a,].
The proof of the following lemma has been done in [7].
Lemma 1
If condition (4) is satisfied for any A from the upper

half plane then equation (1) has a solution F(x,A) which
can be written in the form

F(x,l)zexp(i\/zx)+‘.. K(x,t)e:xp(i\/j:t)dt;a1 <X<w,
®)

The kernel K(x,t) is twice differentiable and sagisfies
the equation

’K () ’K(x.t)

— e GG (10)
and the conditions
Lim
dK (x,x) 1 K, t)
el St AP =22 =0
i 3 qg(x) , x+t—oo X
(1D

The solutions F(x,)) is analytic in the upper half plane
Imw/z >0 and continuous on the real line. The
asymptotic behaviour of the solution is

F(x,2) =exp(iv A 0[1+O0(1)] ;
F, (x,A)=ivA exp(ivix) [iJI +o(1)],
as x —» oo for all Imﬂzo,ﬁ;to.

The proof of the following lemma could be obtained
from [12].
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Lemma 2

The boundary value problem (1)-(2) has a finite
number of negative eigenvalues and they are all simple.

The main results
Lemma 3
Let f(x) be a finite function which has a continuous

derivative in L; (0, oo; p(x)) and satisfies the boundary
condition (2). Then

F
”0 W(\F 1) W(—\F )

+Zc,, F? (Jan) ,

n=1

where

@ 2JA
FG2)= [fx) g(x, N2 px)dix, c, =——‘/—_”—;
0 0,4,
and w (v2) =£10,v2).
Proof:

The resolvent R, of (1)-(2) can be written in the form

fx, VA) 6, V2 ) ,t<x

R (60 = ———
r X FI(O,JI) L Vi) # V7 ), t2x

12)

Thus we have

u(t A A)2idAu x,42)
Risio=Rii0= w(A)w(=v2) ,

where

uCe V)= ;3—1— [FOND S e~E) - fE VDY O]
1

and w(v4)=£(0,v2).

Upon impleihenting the method of Titchmarch [10],
hence we obtain

SO =5 [aAf Ry (50~ R 10,0300 )
7 0 0

203

! ©
+) Res [2\/2 [R(x,t,.2) p(t)f(t)dt)
n=1 0

2u(x, VA)F (AW A
ANVF(A
”OI w(A)w(=VA) +;° PO 2)F R

Multiplying both sides by f(x) p(x) and then integrating
from 0 to <o with respect to x, we obtain

IF(J_ A)F(—JA )J’
7y wAw=A)

e P [ #5400 (e
: n=1 0

j L ®p(x)ds =

]
di+Y e, F (4,),

n=l1

w(J_ )w(—\/’ 2)

which completes the proof of the lemma.

The following lemma could be proved using the
previous one.

Lemma 4

The following Parseval’s equation holds

1 7 uex VAW —2) ’ vt [
- dﬂ' + n ( ) ﬂ'n ) _t, /‘Ln )
Iy 2 or A

= j uxNDut—JA)do ()
where
A
G,
o(H)={ "o wW2)w(=2)
- Y e, . A<0
0>4,>4
and.
44,

v

Corollary 1:

As q(x) = 0, and using formula (12), we get

oo(A)=




Inverse Scattering Problem

i
lj’L[alz sinz(\[zala] )+ cos?'(\//’l‘»cqa1 N1,Az0
=17 oVA . .
0, 1<0.
Lemma §

(i) In formula (7), the kernel A(x,t) satisfies the
fundamental equation

F(x,ty+ A(xt) + [A(x,)F(s,dt = 0,0<t<x<a ,
0

13)
gvhere
82 % sin(a,xv1)sin(e,tV 1)

Ft=—— ;j ! 3 ! dr(A) ,
09 = {0'(/1)—0'0 A , 120

o(A) , A<0
and
co(h) =

y
1 5.
- -71;_[7/1_-[05]2 sin? (@, VA) +cos? (@ a,WA)'dA , 120
0

0, A<0.

(ii) The integral equation (13) has one and only one
solution A(x,t) definedon 0 <t<x<a

Lemma 6
(i) The kernel B(x,t) of formula (8) satisfies Gelfand-

Levitan equation.

H(x,t) + B(x,t) + j B(x,s)H(s,0)ds =0,2, <t <x <00

aq

(14
where
H(x,t)=
_ % z sin(WAey (x—al)iSin(\/Zal ¢=a) g o
and

244
noy=q ST 420

o,(A) , A<0.
(ii) Equation (14) has a unique solution B(x,1) as
a1 <tLx<oo
Proof
Since ¢(x,1) and y(x,\) are solutions of equation (1)

together with the initial conditions (2), hence we
take ¢, (x,4)and vy, (x,A)as the solutions at x = a,.

Also, denote by m, the Wely’s function {5,7,8] of (1)-(2)
and m, the Wely’s function of (1) together with the

initial condition y’(a;) = 0. Thus, we have
F(x,1) = $(x, 1) + w(x,A) mo (L)

£, D=, KA+, DM, (1)

Since f(x,A) and £, (x, 2)are independent solutions as x >
a;, hence we have f, (x,4) =1(x, A) y(1). Thus

m, (D=[¢'@,. D) +y' (@, Hm )]y (2)
and
1=[¢@,, D +w @, Hme (D) [y ().
Hence
m, (A)=[¢'(a;,2)+¥'(a), 1)mo(4) |

¢ @. 0 +w@, HmeW) [

This function is to be used to find the spectral function
of equation (1) through the relation

A
o, (A) =Lim [Im(m,, (s +ig)) ds
£->0 ° 1

Thus equation (14) can be obtained as in [5, 6, 7]. One
can also prove the uniqueness of B(x,t) using [8].

Theorem 1: (Uniqueness Theorem)

If the condition (3) is satisfied and p(x) ew,, then by
- using the spectral function c(}) of (1)-(2), the potential
function q(x) and p(x) can be defined uniquely.
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Proof
It is evident that if a, # a, and o, # o, then the function
oo(hay, ) o' (A, a,,a,)

has no limit as A—>.

Therefore the asymptotic behaviour of oo(r.a;, o) as &
—>o determines a and o uniquely. Hence the function p(x)
can be reconstructed uniquely. Here it should be
mentioned that this case is true for p(x) < w,. From
lemma (3) we have already deduced the fundamental
equation (13), 0 < x <ay, by using the spectral function o(
L). Moreover, and in view of lemma (3). equation (13) has
the unique solution A(x,t) as 0 < x < a; on the form

dA(x, x)

V=2
q(x) ™

Thus, the function q(x) is defined uniquely as 0 < x < a;.
From lemma (4) we have

q(x)=2

dB(x, x)
1 asa; <X <oo,

Hence, we conclude that the equation (1) can be
reconstructed on the interval (0, ) and the theorem is
now completely proved.
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