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ABSTRACT 

In this paper we study the inverse problem on the half line for a generalized stationary one dimensional Schriidinger 
equation. We consider the solutions of the differential equation and study its properties. Given the spectral distribution function, 
we solve the inverse problem. 
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INTRODUCTION 

Consider, in the space L2 (0, oo; p(x)), the generalized 
stationary SchrOdinger equation 

[ ~2 -q(x)+ .Ap(x)] u = 0 (1) 

u' (0) = 0 

We assume that 

(2) 

(3) 

and 
where an> 0, ao = 0, <Xu-:;:. <Xn+I, <Xu-:;:. 1 and A. is a constant. 
Let Wn be the set of functions p(x). Also denote with L1,1 
the class of potentials 
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(4) 

The inverse problem can be stated as follows: knowing 
the spectral distribution function of (1)-(2), can we 
reconstruct equation (1), i.e., can we determine the 
potential q(x) and the density function p(x)? The 
boundary value problem (1), (2) was discussed in [1, 2, 5, 
8] for the case p=1 and u(O) = 0, on the coefficients was 
investigated in [4, 9, 11]. In [12} the inverse problem of 
(1), (2) was investigated using the scattering data by 
employing the technique of the spectral distribution 
function . 

. Preliminaries 

In this section, we give some results for the case p(x) E 
W n which will be used in the subsequent sections. Denote 
with lj>(x,lv), x E[O, aJ] the solution of equation (1) which 
satisfy 

lj>(O,Iv) = 1 , ~j>'(O,Iv) = 0 (5) 

and with ljl(x,lv) the solution of(l) which satisfy 

'V(O,Iv) = 0 , 'V, (0,/v) = 1 (6) 

To obtain these solutions, we shall use the results of [7, 
8]. Let p(x) E W,; a., = a.,ao = 0, and q E Lu then we 
hwe · 

X 

¢(x,A,)=cos/iax)+ J A(x,t)cos(/iat);O:::;;x:::;;a1 , 

0 

(7) 

where the kernel A(x,t) has summable derivatives Ax, Ato 
and 

dA (x, x) = _!_ (x) and 8A (x, t) I _ = 0 dx 2 q ax t-O 

This solution <j>(x,lv) is an entire function of .fi for any 
fixed a.. Moreover 

Uniformly with respect to ,fi on[O,aJl 

The second solution ljl(x,lv) of equation (1) is given by 

sin( .Ji ax)f x sin( .Ji at) 
IJI(x,IL)= r:; + B(x,t) .Ji dt;O:::;;x:::;;a1 , 

"1/Aa 0 Ita 

(8) 
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where the kernel B(x,t) has summable derivatives Bx, Bto 
and 

dB(x,x) =.!.q(x) and B(x,O)=O 
dx 2 

This solution 'V(x,lv) has also the property that it is ·an 

entire function of .fi for Im .fi;::: 0, j.fi I~ cx:J. 

Moreover 

uniformly with respect to .fi on [0, ad. 

The proof of the following lemma has been done in [7]. 

Lemma 1 

If condition ( 4) is satisfied for any A, from the upper 
half plane then equation (1) has a solution F(x,lv) which 
can be written in the form 

00 

F(x,IL)=exp(i./ix)+ J K(x,t)exp(i./i t)dt;a 1 <x<oo, 
X 

(9) 

The kernel K(x,t) is twice differentiable and satisfies 
the equation 

and the conditions 

aK.(x, t) 
0 

at 

(10) 

(11) 

The solutions F(x,lv) is analytic in the upper half plane 

Im .fi > 0 and continuous on the real line. The 

asymptotic behaviour of the solution is 

F(x,IL)=exp(i/i x)[1+0(1)]; 

Fx (x, A,)= i/i exp(i/ix) ~Ji + o(l) 1 
as x ~ cx:J for all Im .[i;::: 0, .fi =1= 0. 

The proof of the following lemma could be obtained 
from [12]. 
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Lemma2 

The boundary value problem (1)-(2) has a finite 
number of negative eigenvalues and they are all simple. 

The main results 

Lemma3 

Let f(x) be a finite function which has a continuous 
derivative in ~ (0, oo; p(x)) and satisfies the boundary 
condition (2). Then 

a) 1 a) IF<5f 5 ! f2(x)p(x)dx= 7r! W(5) W(-5) dA + 

l 

+_Len F 2 (5n) , 
n=l 

where 

r:; a)f r:; 2Ji; . 
F(--12)= f(x);(X,"'/A)p(x)dx,cn 

o /(O,Ji;)' 

Proof: 

The resolvent RA of (1)-(2) can be written in the form 

R ( t)- - 1 /f(x, ../J:) ;(t, ../J:) , tsx (12) 
A X, - F I ( 0, .JT) tt{t, ..;;: ) 91 (X, ..;;: ), t 2 X 

Thus we have 

u(t ,.[i) 2i.fiu (x,Ji) 
RA+io- RA-io= w( Ji) w(-Ji) 

where 

u(x,.[i) = lr:; [f'(O,-{i)f(x,-.fi)- f(x,.fi)J 1(0,-.[i)] 
2i--12 

and w( .fi) = ftO, .fi ). 

Upon implementing the method of Titchmarch [10], 
hence we obtain 

1 a) a) 

f(x) =-. J d2J {RA.+;o (x, t) -R.t-io(x,t)}p(t)f(t)dt 
2m o o 
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Multiplying both sides by f(x) p(x) and then integrating 
from 0 to oo with respect to x, we obtain 

I a) 

+ _LcnF(J)::) J ;(x,A,n)p(x)f(x)dx 
n=l 0 

which completes the proof of the lemma. 

The following lemma could be proved using the 
previous one. 

Lemma4 

The following Parseval' s equation holds 

where 

u(A)= { 

and 

a) 

= f u(x,5)u(t,-5)dcr(2) , 

1 A. d)., 

7r! w(5)w(-5) 
- Len 

O>A,.>A. 

Corollary 1: 

As q(x) = 0, and using formula (12), we get 
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LemmaS 

(i) In formula (7), the kernel A(x,t) satisfies the 
fundamental equation 

X 

F(x,t)+ A(x,t) + J A(x,s)F(s,t)dt = 0, 0::;; t::;; x < a1 , 

0 

(13) 

and 

cr0(A) = 

={ 

(ii) The integral equation (13) has one and only one 
solution A(x,t) defined on 0 ::;; t::;; x < a1 

Lemma6 

(i) The kernel B(x,t) of formula (8) satisfies Gelfand­
Levitan equation. 

X 

H(x,t) + B(x,t) + J B(x, s)H(s, t)ds = 0, a1 S t S x < oo 

(14) 

where 

and 
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.IL<O. 

(ii) Equation (14) has a unique solution B(x,t) as 
a1 < t::;; x < oo 

Proof 

Since ~(x,A) and 'J'(X,A) are solutions of equation (1) 
together with the initial conditions (2), hence we 
take ~a (x, A,) and 'I' (x A,) as the solutions at x = a1. 

1 al ' 

Also, denote by mo the Wely's function [5,7,8] of (1)-(2) 

and m a the Wely's function of (1) together with the 
I 

initial condition y'(a1) = 0. Thus, we have 

F(x,A) = ~(x,A) + \ji(X,A) mo (A) 

Since f(x,A) and fa, (x,..t)are independent solutions as x > 

a1, hence we have f a
1 

(x,.A) = f(x, A) y(A). Thus 

and 

Hence 

This function is to be used to find the spectral function 
of equation ( 1) through the relation 

A. 

a "t (A,) =Lim Jim(ma (s +is)) ds 
&~0 0 I 

Thus equation (14) can be obtained as in [5, 6, 7]. One 
can also prove the uniqueness ofB(x,t) using [8]. 

Theorem 1: (Uniqueness Theorem) 

If the condition (3) is satisfied and p(x) EWn , then by 
using the spectral function cr(A) of (1)-(2), the potential 
function q(x) and p(x) can be defined uniquely. 
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Proof 

It is evident that if a1 * a2 and a 1 * <Xz then the function 

has no limit as A~oo. 

Therefore the asymptotic behaviour of cro(A,al, a1) as A 
~oo determines a and a uniquely. Hence the function p(x) 
can be reconstructed uniquely. Here it should be 
mentioned that this case is true for p(x) :<=:; Wn. From 
lemma (3) we have already deduced the fundamental 
equation (13). 0 :<=:; x < a1, by using the spectral function cr( 
A). Moreover, and in view oflemma (3), equation (13) has 
the unique solution A(x,t) as 0 :<=:; x :<=:; a1 on the form 

( 
. 

2 
dA(x,x) 

q x)= 
dx 

Thus, the function q(x) is defined uniquely as 0 :<=:; x :<=:; a1. 
From lemma (4) we have 

dB(x,x) 
q(x)=2 asa1 <x<oo. 

dx 

Hence, we conclude that the equation ( 1) can be 
reconstructed on the interval (0, oo) and the theorem is 
now completely proved. 
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