The Superimprimitive Subgroups Of The Alternating Group Of Degree 8
Author | Omar, A. A. H [عبد الرؤوف عمر] |
Author | Kamal, E. M. |
Available date | 2009-11-25T15:31:21Z |
Publication Date | 1984 |
Publication Name | Qatar University Science Bulletin |
Citation | Qatar University Science Bulletin, 1984, Vol. 4, Pages 7-12. |
Abstract | A transitive permutation group G is called superimprimitive if it is imprimitive with non-trivial block systems of imprimitivity of lengths all the non-trivial divisors of the degree of G; The superimprimitivity concepts was studied first by Omar (2), and later by the authors (3). In the present paper we shall give some results concerning this concept m part 1, and determine in part 2, all superimprimitive subgroups of the alternating group of degree 8. We proved the following: Lemma (I): Let G be a transitive group acting on a set X and m is the number of non-trivial divisors of |X). If G contains m intransitive normal proper subgroups each having different orbit lengths then G is superimprimitive. The orbits of each subgroup form a block system of imprimitivity. Lemma (2): (a) Let G be a superimprimitive group. For every non-trivial divisor d of the degree of G and for x£X, there exists a group Z which lies property between G, and G such that the set {x^ has length d. (b) I^G,CZ,cG holds, where Zi, i=l,...,m are proper subgroups of G and the sets {x '} have different lengths, then G is superimprimitive. Then we show that, among the 48337 subgroups of Ag, which split into 137 classes there are 4425 superimprimitive subgroups which split into 18 classes, their generators are given. |
Language | en |
Publisher | Qatar University |
Subject | Mathematics الرياضيات |
Alternative Title | الزمر الجزئية متعددة غير الأولية من الزمرة A8 |
Type | Article |
Alternative Abstract | يقال لزمرة التبديلات الانتقالية أنها متعددة غير الأولية اذا كانت غير الأولية ولها نظام من البلوكات الفصلية لكل قاسم فعلي من قواسم درجة الزمرة . ولقد قدم هذا البحث نظريتين لشروط مكافئة للتعريف . للتعرف عل الزمر متعددة غير الأولية . ثم وضحنا أنه بين كل الزمر الجزئية لزمرة التبديلات الزوجية من درجة ثمانية ، A8 ، وعددهم 48337 زمرة جزئية مقسمين الى 137 فصل تكافؤ . يوجد4425 زمرة جزئية متعددة غير الأولية مقسمين الى 18 فصل تكافؤ. |
Files in this item
This item appears in the following Collection(s)
-
Qatar University Science Journal - [From 1981 TO 2007] [770 items ]