• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Titanium Nanorods Loaded PCL Meshes with Enhanced Blood Vessel Formation and Cell Migration for Wound Dressing Applications.

    Thumbnail
    Date
    2019-07-01
    Author
    Augustine, Robin
    Hasan, Anwarul
    Patan, Noorunnisa Khanam
    Augustine, Anitha
    Dalvi, Yogesh B
    Varghese, Ruby
    Unni, Raghunath Narayanan
    Kalarikkal, Nandakumar
    Al Moustafa, Ala-Eddin
    Thomas, Sabu
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Proper management of nonhealing wounds is an imperative clinical challenge. For the effective healing of chronic wounds, suitable wound coverage materials with the capability to accelerate cell migration, cell proliferation, angiogenesis, and wound healing are required to protect the healing wound bed. Biodegradable polymeric meshes are utilized as effective wound coverage materials to protect the wounds from the external environment and prevent infections. Among them, electrospun biopolymeric meshes have got much attention due to their extracellular matrix mimicking morphology, ability to support cell adhesion, and cell proliferation. Herein, electrospun nanocomposite meshes based on polycaprolactone (PCL) and titanium dioxide nanorods (TNR) are developed. TNR incorporated PCL meshes are fabricated by electrospinning technique and characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy (FTIR) analysis, and X-Ray diffraction (XRD) analysis. In vitro cell culture studies, in ovo angiogenesis assay, in vivo implantation study, and in vivo wound healing study are performed. Interestingly, obtained in vitro and in vivo results demonstrated that the presence of TNR in the PCL meshes greatly improved the cell migration, proliferation, angiogenesis, and wound healing. Owing to the above superior properties, they can be used as excellent biomaterials in wound healing and tissue regeneration applications.
    DOI/handle
    http://dx.doi.org/10.1002/mabi.201900058
    http://hdl.handle.net/10576/12123
    Collections
    • Biomedical Research Center Research [‎786‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Medicine Research [‎1759‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video