• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications.

    Thumbnail
    Date
    2018-11-01
    Author
    Augustine, Robin
    Hasan, Anwarul
    Yadu Nath, V K
    Thomas, Jince
    Augustine, Anitha
    Kalarikkal, Nandakumar
    Moustafa, Ala-Eddin Al
    Thomas, Sabu
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Electrospun membranes have the potential to act as an effective barrier for wounds from the external environment to prevent pathogens. In addition, materials with good antibacterial properties can effectively fight off the invading pathogens. In this paper, we report the development of a novel electrospun polyvinyl alcohol (PVA) membrane containing biosynthesized silver nanoparticle (bAg) for wound dressing applications. Plant extract from a medicinal plant Mimosa pudica was utilized for the synthesis of bAg. Synthesized bAg were characterized by Ultraviolet-Visible (UV) Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The morphology of bAg was obtained from Transmission Electron Microscopy (TEM) and found that they were spherical in morphology with average particle size 7.63 ± 1.2 nm. bAg nanoparticles incorporated PVA membranes were characterized using several physicochemical techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD) analysis. Experimental results confirmed the successful incorporation of bAg in PVA fibers. PVA nanofiber membranes incorporated with bAg showed good mechanical strength, excellent exudate uptake capacity, antibacterial activity, blood compatibility and cytocompatibility.
    DOI/handle
    http://dx.doi.org/10.1007/s10856-018-6169-7
    http://hdl.handle.net/10576/12126
    Collections
    • Biomedical Research Center Research [‎786‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Medicine Research [‎1759‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video