عرض بسيط للتسجيلة

المؤلفNasser M.M.S.
المؤلفGreen C.C.
تاريخ الإتاحة2020-02-05T08:53:05Z
تاريخ النشر2018
اسم المنشورNonlinearity
المصدرScopus
الرقم المعياري الدولي للكتاب9517715
معرّف المصادر الموحدhttp://dx.doi.org/10.1088/1361-6544/aa99a5
معرّف المصادر الموحدhttp://hdl.handle.net/10576/12685
الملخصA collection of arbitrarily-shaped solid objects, each moving at a constant speed, can be used to mix or stir ideal fluid, and can give rise to interesting flow patterns. Assuming these systems of fluid stirrers are two-dimensional, the mathematical problem of resolving the flow field - given a particular distribution of any finite number of stirrers of specified shape and speed - can be formulated as a Riemann-Hilbert (R-H) problem. We show that this R-H problem can be solved numerically using a fast and accurate algorithm for any finite number of stirrers based around a boundary integral equation with the generalized Neumann kernel. Various systems of fluid stirrers are considered, and our numerical scheme is shown to handle highly multiply connected domains (i.e. systems of many fluid stirrers) with minimal computational expense. 2018 IOP Publishing Ltd & London Mathematical Society.
راعي المشروعMMSN and CCG both acknowledge financial support from Qatar University grant QUUG-CAS-DMSP-156-27. CCG acknowledges support from Australian Research Council Discovery Project DP140100933; he is also grateful for the hospitality of the Department of Mathematics, Statistics & Physics at Qatar University where this work was completed.
اللغةen
الناشرInstitute of Physics Publishing
الموضوعfluid stirrers
generalized Neumann kernel
ideal fluid
multiply connected domains
Riemann-Hilbert problem
العنوانA fast numerical method for ideal fluid flow in domains with multiple stirrers
النوعArticle
الصفحات815-837
رقم العدد3
رقم المجلد31
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة