عرض بسيط للتسجيلة

المؤلفZografopoulos D.C.
المؤلفSinatkas G.
المؤلفLotfi E.
المؤلفShahada L.A.
المؤلفSwillam M.A.
المؤلفKriezis E.E.
المؤلفBeccherelli R.
تاريخ الإتاحة2020-02-05T08:53:07Z
تاريخ النشر2018
اسم المنشورApplied Physics A: Materials Science and Processing
المصدرScopus
الرقم المعياري الدولي للكتاب9478396
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s00339-017-1506-0
معرّف المصادر الموحدhttp://hdl.handle.net/10576/12727
الملخصA class of electro-optically tunable metamaterial absorbers is designed and theoretically investigated in the infrared regime towards realizing free-space amplitude modulators. The spacer between a subwavelength metallic stripe grating and a back metal reflector is occupied by a bilayer of indium tin oxide (ITO) and hafnium oxide (HfO 2). The application of a bias voltage across the bilayer induces free-carrier accumulation at the HfO 2/ITO interface that locally modulates the ITO permittivity and drastically modifies the optical response of the absorber owing to the induced epsilon-near-zero (ENZ) effect. The carrier distribution and dynamics are solved via the drift-diffusion model, which is coupled with optical wave propagation studies in a common finite-element method platform. Optimized structures are derived that enable the amplitude modulation of the reflected wave with moderate insertion losses, theoretically infinite extinction ratio, sub-picosecond switching times and low operating voltages. 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
راعي المشروعThis report was made possible by a NPRP award [NPRP 7-456-1-085] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرSpringer Verlag
العنوانAmplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides
النوعArticle
الصفحات-
رقم العدد2
رقم المجلد124


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة