عرض بسيط للتسجيلة

المؤلفAhmad Y.
المؤلفKhattab O.
المؤلفMalik A.
المؤلفMusleh A.
المؤلفHammoud M.
المؤلفKutlu M.
المؤلفShehata M.
المؤلفElsayed T.
تاريخ الإتاحة2020-02-06T08:09:21Z
تاريخ النشر2018
اسم المنشورProceedings of the VLDB Endowment
اسم المنشور44th International Conference on Very Large Data Bases, VLDB 2018
المصدرScopus
الرقم المعياري الدولي للكتاب21508097
معرّف المصادر الموحدhttp://dx.doi.org/10.14778/3204028.3204035
معرّف المصادر الموحدhttp://hdl.handle.net/10576/12866
الملخصThis paper presents LA3, a scalable distributed system for graph analytics. LA3 couples a vertex-based programming model with a highly optimized linear algebra-based engine. It translates any vertex-centric program into an iteratively executed sparse matrix-vector multiplication (SpMV). To reduce communication and enhance scalability, the adjacency matrix representing an input graph is partitioned into locality-aware 2D tiles distributed across multiple processes. Alongside, three major optimizations are incorporated to preclude redundant computations and minimize communication. First, the link-based structure of the input graph is exploited to classify vertices into different types. Afterwards, vertices of special types are factored out of the main loop of the graph application to avoid superfluous computations. We refer to this novel optimization as computation filtering. Second, a communication filtering mechanism is involved to optimize for the high sparsity of the input matrix due to power-law distributions, common in real-world graphs. This optimization ensures that each process receives only the messages that pertain to non-zero entries in its tiles, substantially reducing communication traffic since most tiles are highly sparse. Lastly, a pseudo-asynchronous computation and communication optimization is proposed, whereby processes progress and communicate asynchronously, consume messages as soon as they become available, and block otherwise. We implemented and extensively tested LA3 on private and public clouds. Results show that LA3 outperforms six related state-of-the-art and popular distributed graph analytics systems by an average of 10X.
اللغةen
الناشرAssociation for Computing Machinery
العنوانLA3: A scalable link-and locality-aware linear algebra-based graph analytics system
النوعConference
الصفحات920-933
رقم العدد8
رقم المجلد11
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة