• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Graphene a promising electrode material for supercapacitors?

    Thumbnail
    Date
    2018
    Author
    Lemine A.S.
    Zagho M.M.
    Altahtamouni T.M.
    Bensalah N.
    Metadata
    Show full item record
    Abstract
    The global demand for high performance and environmentally friendly energy storage systems leads to intensive research on new and advanced electrode materials that are able to satisfy the fast-growing global market in various applications. The 2D graphene material is one of the most promising candidates for next-generation energy storage applications, particularly supercapacitor devices due to its exceptional intrinsic properties such as highest theoretical specific surface area (2600?m2/g), high electrical charges mobility (230?000?cm2/V?s), thermal conductivity (3000?W/mK), and highest strength (130?GPa). This comprehensive review summarizes the most recent progress made on the graphene material in its different structural forms of foams (3D), thin films (2D), nano-fibers (1D), and nano-dotes (0D) for supercapacitor electrodes. It initiates with a brief historical introduction on graphene discovery and its current production techniques that retain its intrinsic properties ranging from mechanical exfoliation of graphene in high quality to its epitaxial growth by chemical vapor deposition on metal substrates and its derivation by chemical reduction of graphene oxide. In addition to highlighting its main characterization techniques such as Raman spectroscopy, atomic force microscopy, and transmission electron microscopy, as well as, its critical properties including electrical, optical, mechanical, and thermal properties. Its potential applications are also illustrated with emphasizing on its usage as an electrode material in supercapacitors. Finally, its main challenges and future prospects are considerably pointed out.
    DOI/handle
    http://dx.doi.org/10.1002/er.4170
    http://hdl.handle.net/10576/12952
    Collections
    • Chemistry & Earth Sciences [‎605‎ items ]
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video