Show simple item record

AuthorSwillam M.A.
AuthorZaki A.O.
AuthorKirah K.
AuthorShahada L.A.
Available date2020-04-01T06:54:48Z
Publication Date2019
Publication NameScientific Reports
ResourceScopus
ISSN20452322
URIhttp://dx.doi.org/10.1038/s41598-019-42675-z
URIhttp://hdl.handle.net/10576/13639
AbstractIn this work, we propose a micro-scale modulator architecture with compact size, low insertion loss, high extinction ratio, and low energy/bit while being compatible with the silicon-on-insulator (SOI) platform. This is achieved through the utilization of epsilon-near-zero (ENZ) effect of indium-tin-oxide (ITO) to maximize the attainable change in the effective index of the optical mode. It also exploits the ITO layer in a hybrid plasmonic ring resonator which further intensifies the effect of the changes in both the real and imaginary parts of the effective index. By electrically inducing carriers in the indium tin oxide (ITO), to reach the ENZ state, the resonance condition shifts, and the losses of the hybrid plasmonic ring resonator increases significantly. This mechanism is optimized to maximize the extinction ratio and minimize the insertion loss. The proposed structure is designed to maximize the coupling to and from standard SOI waveguide, used as access ports. In addition, the operational region is reconfigurable by changing the bias voltage. - 2019, The Author(s).
SponsorThis work was made possible by a NPRP award [NPRP7-456-1-085] from the Qatar National Research Fund (member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.
Languageen
PublisherNature Publishing Group
SubjectPhotonics
Modulators
Optical modulators
TitleOn Chip Optical Modulator using Epsilon-Near-Zero Hybrid Plasmonic Platform
TypeArticle
Issue Number1
Volume Number9
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record