Fault detection and severity identification of ball bearings by online condition monitoring
التاريخ
2019المؤلف
Abdeljaber O.Sassi S.
Avci O.
Kiranyaz S.
Ibrahim A.A.
Gabbouj M.
...show more authors ...show less authors
البيانات الوصفية
عرض كامل للتسجيلةالملخص
This paper presents a fast, accurate, and simple systematic approach for online condition monitoring and severity identification of ball bearings. This approach utilizes compact one-dimensional (1-D) convolutional neural networks (CNNs) to identify, quantify, and localize bearing damage. The proposed approach is verified experimentally under several single and multiple damage scenarios. The experimental results demonstrated that the proposed approach can achieve a high level of accuracy for damage detection, localization, and quantification. Besides its real-time processing ability and superior robustness against the high-level noise presence, the compact and minimally trained 1-D CNNs in the core of the proposed approach can handle new damage scenarios with utmost accuracy. - 1982-2012 IEEE.
المجموعات
- الهندسة المدنية [851 items ]
- الهندسة الكهربائية [2649 items ]
- الهندسة الميكانيكية والصناعية [1396 items ]