Rational synthesis of ternary PtIrNi nanocrystals with enhanced poisoning tolerance for electrochemical ethanol oxidation
Date
2019Author
Ahmad Y.H.Mohamed A.T.
Youssef K.M.
Kundu S.
Mkhoyan K.A.
Al-Qaradawi S.Y.
...show more authors ...show less authors
Metadata
Show full item recordAbstract
The development of highly efficient and durable anode materials for ethanol electro-oxidation remains a challenge. Herein, we report the synthesis of Pt1−x−yIrxNiy nanocrystals via one-step procedure by ultrasonic-assisted co-reduction of the metal precursors using ascorbic acid as a mild reducing agent and pluronic F127 as a structure directing agent. The catalytic performance of this ternary catalyst towards electrochemical oxidation of ethanol was examined and compared to its mono and binary Pt counterparts (Pt, Pt1−xIrx, and Pt1−yNiy) that are synthesized by the same method. TEM analysis showed a porous nanodendritic structure for the synthesized ternary electrocatalyst with an average size of 20 ± 1 nm. The electrochemical measurements revealed an electrochemically active surface area, ECSA, of 73 m2 g−1. The as-synthesized ternary electrocatalyst showed an improved catalytic activity towards ethanol oxidation in 1 M KOH with a measured mass activity of 3.8 A mg−1 which is 1.7, 2.0, and 3.2 times higher than that of Pt1−xIrx, Pt1−yNiy, and Pt, respectively. Additionally, the Pt1−x−yIrxNiy nanocrystals expressed high poisoning tolerance (jf/jb = 4.5) and high durability compared to its mono and binary counterparts.
Collections
- Chemistry & Earth Sciences [587 items ]