• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2020)
  • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2020)
  • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Long-Term Cost Performance of Corrosion-Resistant Reinforcements in Structural Concrete

    Thumbnail
    View/Open
    CIC2020_ Artcile97.pdf (1.653Mb)
    Date
    2020
    Author
    Younis, Adel
    Ebead, Usama
    Metadata
    Show full item record
    Abstract
    Corrosion, which leads to the premature deterioration of reinforced concrete (RC) structures, is increasingly an issue of global concern. Accordingly, corrosion-resistant materials have emerged as alternative reinforcement solutions in concrete structures. Yet, the high initial cost of such materials may mitigate their potential use. This paper reports on the results of two life-cycle-cost-analysis (LCCA) studies that aim at verifying the long-term cost performance of corrosion-resistant reinforcements in structural concrete. The first study conducted a 100-year-based LCCA study to evaluate the relative cost savings of structural concrete that combines seawater, recycled coarse aggregates, and glass fiber-reinforced polymer (GFRP) reinforcement in high-rise buildings as compared to a traditional reinforced concrete (i.e., freshwater-mixed, natural-aggregate, black-steelreinforced). In the second study, a life-cycle-cost comparison was established among four reinforcement alternatives, viz., conventional steel, epoxy-coated steel, stainless steel, and GFRP for a RC water chlorination tank considering a 100-year study period. The results of these two studies suggest that the use of corrosion-resistant reinforcement (especially GFRP) in structural concrete may potentially lead to significant cost savings in the long term: the net present cost of GFRP-RC structures was generally 40-50% lower than that reinforced with black steel.
    URI
    http://www.cic.qa
    DOI/handle
    http://dx.doi.org/10.29117/cic.2020.0104
    http://hdl.handle.net/10576/14690
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure [‎36‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video