• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Course-Aware Opportunistic Routing Protocol for FANETs

    Thumbnail
    Date
    2019
    Author
    He, Yixin
    Tang, Xiao
    Zhang, Ruonan
    Du, Xiaojiang
    Zhou, Deyun
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In recent years, unmanned aerial vehicles (UAVs) have gained popularity in various applications and services in both the military and civilian domains. Compared with the single-UAV scenario, flying ad hoc networks (FANETs) consisting of ground stations (GSs) and UAVs have the advantages of flexible configuration and wide coverage. However, due to significant mobility and highly dynamic topology, designing reliable and efficient routing protocols for FANETs is a challenging task. In this paper, we consider a network that comprises multiple flying UAVs and GSs to transfer messages by multi-hop relaying. We propose a routing protocol, named course-aware opportunistic routing for FANETs (CORF). The UAVs cooperatively exchange aeronautical data with others. The source UAV node (SUN) calculates the transfer probabilities to different neighbors by jointly considering the positions of its neighbors and the destination node. Based on the direction information and the transfer probabilities, the SUN selects the next-hop relay nodes among the neighbor UAVs and GSs. This process continues until the destination node receives the message. The simulation results demonstrate that, the proposed CORF protocol achieves significant performance superiority as compared with the traditional protocols in terms of message delivery rate and network latency. - 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2019.2944867
    http://hdl.handle.net/10576/15579
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video