Damage detection using enhanced multivariate statistical process control technique
المؤلف | Chaabane, Marwa |
المؤلف | Ben Hamida, Ahmed |
المؤلف | Mansouri, Majdi |
المؤلف | Nounou, Hazem N. |
المؤلف | Avci, Onur |
تاريخ الإتاحة | 2020-08-20T11:44:18Z |
تاريخ النشر | 2017 |
اسم المنشور | 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA 2016 - Proceedings |
المصدر | Scopus |
الملخص | This paper addresses the problem of damage detection technique of structural health monitoring (SHM). Kernel principal components analysis (KPCA)-based generalized likelihood ratio (GLR) technique is developed to enhance the damage detection of SHM processes. The data are collected from the complex three degree of freedom spring-mass-dashpot system in order to calculate the KPCA model. The developed KPCA-based GLR is the method that attempts to combine the advantages of GLR statistic in the cases where process models are not available and a multivariate statistical process control |
الملخص | KPCA. The simulations show the improved performance of the KPCA-based GLR damage detection method. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Damage detection GLR Kernel PCA SHM |
النوع | Conference |
الصفحات | 234-238 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2754 items ]