عرض بسيط للتسجيلة

المؤلفJaved, Sajid
المؤلفMahmood, Arif
المؤلفBouwmans, Thierry
المؤلفJung, Soon Ki
تاريخ الإتاحة2020-09-03T08:58:11Z
تاريخ النشر2017
اسم المنشورIEEE Transactions on Image Processing
المصدرScopus
الرقم المعياري الدولي للكتاب10577149
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/TIP.2017.2746268
معرّف المصادر الموحدhttp://hdl.handle.net/10576/15930
الملخصBackground estimation and foreground segmentation are important steps in many high-level vision tasks. Many existing methods estimate background as a low-rank component and foreground as a sparse matrix without incorporating the structural information. Therefore, these algorithms exhibit degraded performance in the presence of dynamic backgrounds, photometric variations, jitter, shadows, and large occlusions. We observe that these backgrounds often span multiple manifolds. Therefore, constraints that ensure continuity on those manifolds will result in better background estimation. Hence, we propose to incorporate the spatial and temporal sparse subspace clustering into the robust principal component analysis (RPCA) framework. To that end, we compute a spatial and temporal graph for a given sequence using motion-aware correlation coefficient. The information captured by both graphs is utilized by estimating the proximity matrices using both the normalized Euclidean and geodesic distances. The low-rank component must be able to efficiently partition the spatiotemporal graphs using these Laplacian matrices. Embedded with the RPCA objective function, these Laplacian matrices constrain the background model to be spatially and temporally consistent, both on linear and nonlinear manifolds. The solution of the proposed objective function is computed by using the linearized alternating direction method with adaptive penalty optimization scheme. Experiments are performed on challenging sequences from five publicly available datasets and are compared with the 23 existing state-of-the-art methods. The results demonstrate excellent performance of the proposed algorithm for both the background estimation and foreground segmentation. 1 2017 IEEE.
راعي المشروعThis work was supported by the National Research Foundation of Korea funded by the Korean Government (NRF-20170915).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعBackground modeling
foreground detection
graph regularization
robust principal component analysis
subspace clustering
العنوانBackground-Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering
النوعArticle
الصفحات5840-5854
رقم العدد12
رقم المجلد26
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة