Background-Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering
المؤلف | Javed, Sajid |
المؤلف | Mahmood, Arif |
المؤلف | Bouwmans, Thierry |
المؤلف | Jung, Soon Ki |
تاريخ الإتاحة | 2020-09-03T08:58:11Z |
تاريخ النشر | 2017 |
اسم المنشور | IEEE Transactions on Image Processing |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 10577149 |
الملخص | Background estimation and foreground segmentation are important steps in many high-level vision tasks. Many existing methods estimate background as a low-rank component and foreground as a sparse matrix without incorporating the structural information. Therefore, these algorithms exhibit degraded performance in the presence of dynamic backgrounds, photometric variations, jitter, shadows, and large occlusions. We observe that these backgrounds often span multiple manifolds. Therefore, constraints that ensure continuity on those manifolds will result in better background estimation. Hence, we propose to incorporate the spatial and temporal sparse subspace clustering into the robust principal component analysis (RPCA) framework. To that end, we compute a spatial and temporal graph for a given sequence using motion-aware correlation coefficient. The information captured by both graphs is utilized by estimating the proximity matrices using both the normalized Euclidean and geodesic distances. The low-rank component must be able to efficiently partition the spatiotemporal graphs using these Laplacian matrices. Embedded with the RPCA objective function, these Laplacian matrices constrain the background model to be spatially and temporally consistent, both on linear and nonlinear manifolds. The solution of the proposed objective function is computed by using the linearized alternating direction method with adaptive penalty optimization scheme. Experiments are performed on challenging sequences from five publicly available datasets and are compared with the 23 existing state-of-the-art methods. The results demonstrate excellent performance of the proposed algorithm for both the background estimation and foreground segmentation. 1 2017 IEEE. |
راعي المشروع | This work was supported by the National Research Foundation of Korea funded by the Korean Government (NRF-20170915). |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Background modeling foreground detection graph regularization robust principal component analysis subspace clustering |
النوع | Article |
الصفحات | 5840-5854 |
رقم العدد | 12 |
رقم المجلد | 26 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]