عرض بسيط للتسجيلة

المؤلفElsayed, Mohamed
المؤلفMahmuddin, Massudi
المؤلفBadawy, Ahmed
المؤلفElfouly, Tarek
المؤلفMohamed, Amr
المؤلفAbualsaud, Khalid
تاريخ الإتاحة2020-10-13T10:54:02Z
تاريخ النشر2017
اسم المنشورProceedings - 2017 IEEE 13th International Colloquium on Signal Processing and its Applications, CSPA 2017
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/CSPA.2017.8064964
معرّف المصادر الموحدhttp://hdl.handle.net/10576/16426
الملخصDue to the peculiarity of wireless sensor networks (WSNs), where a group of sensors continuously transmit data to other sensors or to the fusion center, it is crucial to compress the transmitted data in order to save the consumed power, which is paramount in the case of portable devices. There exists several techniques for data compression such as discrete wavelet transform (DWT) based, which fails to achieve high compression ratio for an acceptable distortion ratio. In this paper, we explore exploiting Walsh transform with a moving average filtering (MAF) for data compression in WSNs. One application of WSN is wireless body sensor networks. We apply Walsh transform on real Electroencephalogram (EEG) data collected from patients. Furthermore, we compare our results to DWT and show the superiority of exploiting Walsh transform for data compression. We show that using MAF with Walsh transform enhances the compression ratio for up to 30% more than that achieved by DWT. 1 2017 IEEE.
راعي المشروعThis research was made possible by NPRP 6-150-2-059 and NPRP 7-684-1-127 grants from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعcompression ratio
distortion ratio
ECG
EEG
SHM
Walsh transform
WBSN
WSN
العنوانWalsh transform with moving average filtering for data compression in wireless sensor networks
النوعConference
الصفحات270-274


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة