Enhancing mode I inter-laminar fracture toughness of aluminum/fiberglass fiber-metal laminates by combining surface pre-treatments
View/ Open
Publisher version (Check access options)
Check access options
Date
2017Metadata
Show full item recordAbstract
This paper investigates the influence of multiple surface treatment, including chemical etching and plasma treatments, on the mode I inter-laminar fracture toughness () of aluminum/fiberglass fiber-metal laminates. Laser technology was employed to further enhance aluminum substrate surface morphology to promote micro-mechanical interlocks (MMI) with non-crimp [0°/−45°/90°/+45°] fiberglass/epoxy resin. A vacuum assisted resin transfer molding technique was used to produce the hybrid laminates. Five surface pre-treatments were compared; N2 plasma, O2 plasma, alkaline etch, laser, and laser+N2 plasma. Alkaline etched specimens absorbed the highest energy (237.8%) whereas laser+N2 plasma treated specimens exhibited the highest (73.2%). In addition, when MMI is promoted, the mechanical locks acted as localized obstacles resisting the propagating crack and caused transition of failure mode from adhesive to adhesive-cohesive mixed mode.
Collections
- Mechanical & Industrial Engineering [1396 items ]