• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enabling broadcast communications in presence of jamming via probabilistic pairing

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Pietro, Roberto Di
    Oligeri, Gabriele
    Metadata
    Show full item record
    Abstract
    This paper presents a thorough analysis of Freedom of Speech (FoS): a lightweight, fully distributed, and probabilistic protocol that assures the delivery of a message to be broadcast notwithstanding the presence of a jammer. FoS enjoys several features when compared to competing schemes: (i) it requires each node to store only N symmetric pairwise keys; (ii) node joining and node eviction require just minimal intervention on the already operating nodes; and, finally, (iii) it is overall highly efficient in terms of required computation and message exchange. We provide a detailed theoretical analysis of our solution supported by extensive simulations considering different operating scenarios: we start from a simplified network assumption of one only transmitter that wants to broadcast a message and we subsequently move to a realistic scenario where nodes that have received the message act themselves as a proxy. We propose a theoretical framework to model the protocol performance starting by a benign scenario (no jamming activities). Later, we extend the model to more hostile environments considering firstly a jammer with no knowledge of the nodes' secret keys (external jammer) and subsequently, a jammer aware of a fraction of the nodes' secret keys (internal jammer). The experimental results do confirm our theoretical analysis and show the overall viability of our solution. In particular, FoS outperforms competitor solutions for deployment scenarios characterized by even a moderated degree of node volatility.
    DOI/handle
    http://dx.doi.org/10.1016/j.comnet.2017.02.010
    http://hdl.handle.net/10576/16463
    Collections
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video