Enhancement in Oral Absorption of Ceftriaxone by Highly Functionalized Magnetic Iron Oxide Nanoparticles.
Date
2020-05-01Author
Kawish, MuhammadElhissi, Abdelbary
jabri, Tooba
Iqbal, Kanwal Muhammad
Zahid, Hina
Shah, Muhammad Raza
...show more authors ...show less authors
Metadata
Show full item recordAbstract
The present study aims at the development, characterization, biocompatibility investigation and oral bioavailability evaluation of ceftriaxone (CFT)-loaded N'-methacryloylisonicotinohydrazide (MIH)-functionalized magnetic nanoparticles (CFT-MIH-MNPs). Atomic force microscopy (AFM) and dynamic light scattering (DLS) showed that the developed CFT loaded MIH-MNPs are spherical, with a measured hydrodynamic size of 184.0 ± 2.7 nm and negative zeta potential values (-20.2 ± 0.4 mV). Fourier transformed infrared spectroscopic (FTIR) analysis revealed interactions between the nanocarrier and the drug. Nanoparticles showed high drug entrapment efficiency (EE) of 79.4% ±1.5%, and the drug was released gradually in vitro and showed prolonged in vitro stability using simulated gastrointestinal tract (GIT) fluids. The formulations were found to be highly biocompatible (up to 100 µg/mL) and hemocompatible (up to 1.0 mg/mL). Using an albino rabbit model, the formulation showed a significant enhancement in drug plasma concentration up to 14.4 ± 1.8 µg/mL in comparison with its control (2.0 ± 0.6 µg/mL). Overall, the developed CFT-MIH-MNPs formulation was promising for provision of high drug entrapment, gradual drug release and suitability for enhancing the oral delivery of CFT.
Collections
- Pharmacy Research [1316 items ]