Joint K-Means quantization for Approximate Nearest Neighbor Search
المؤلف | Ozan, Ezgi Can |
المؤلف | Kiranyaz, Serkan |
المؤلف | Gabbouj, Moncef |
تاريخ الإتاحة | 2021-07-01T05:48:09Z |
تاريخ النشر | 2016 |
اسم المنشور | Proceedings - International Conference on Pattern Recognition |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 1051-4651 |
الملخص | Recently, Approximate Nearest Neighbor (ANN) Search has become a very popular approach for similarity search on large-scale datasets. In this paper, we propose a novel vector quantization method for ANN, which introduces a joint multi-layer K-Means clustering solution for determination of the codebooks. The performance of the proposed method is improved further by a joint encoding scheme. Experimental results verify the success of the proposed algorithm as it outperforms the state-of-the-art methods. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Pattern recognition Vector quantization Approximate nearest neighbors (ANN) Codebooks Joint encoding K - means clustering K-means Large-scale datasets Similarity search State-of-the-art methods Nearest neighbor search |
النوع | Conference |
الصفحات | 3645-3649 |
رقم المجلد | 0 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2754 items ]