• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA)

    No Thumbnail [120x130]
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Nwaoha, Chikezie
    Saiwan, Chintana
    Idem, Teeradet Supap Raphael
    Tontiwachwuthikul, Paitoon
    Rongwong, Wichitpan
    Al-Marri, Mohammed J.
    Benamor, Abdelbaki
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this present research, promising aqueous amine tri-solvent blends for carbon dioxide (CO2) capture in post-combustion processes were investigated for their cyclic loadings, cyclic capacities, initial absorption rates, desorption rates, potentials of reducing regeneration energy, and relative costs of the aqueous amine solutions. The absorption experiments were conducted at 101.3 kPa and 313 K using 15.1%v/v CO2, while the desorption experiments were carried out at 101.3 kPa and 363 K. Amines selected in the tri-solvent blends included 1-2 kmol/m3 methyldiethanolamine (MDEA), 1-2 kmol/m3 2-amino-2-methyl-1-propanol (AMP), and 1.5 kmol/m3 diethylenetriamine (DETA), while the total amine solutions concentration were kept constant at 4.5 kmol/m3. The experimental results indicated that all the AMP - MDEA - DETA tri-solvent blends were all superior to 5 kmol/m3 MEA in equilibrium CO2 loadings, absorption capacities, initial desorption rates, cyclic loadings, cyclic capacities, amine - CO2 ratio and regeneration energies. For the initial absorption rates at the first 60 min, only tri - solvent blends with AMP/MDEA molar ratio of 1 and 2 was higher than that of 5 kmol/m3 MEA. The predicted corrosion potential of the AMP - MDEA - DETA blends is lower than 5 kmol/m3 MEA. It was also discovered that the relative costs of the aqueous solutions of the tri - solvent blends considering their estimated circulation rates were lower than that of 5 kmol/m3 MEA. Findings from this research revealed the potentials of the tri - solvent blends in reducing absorber and regenerator sizes and possible reductions in the regeneration energy. 2016 Elsevier Ltd. All rights reserved.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijggc.2016.08.012
    http://hdl.handle.net/10576/21053
    Collections
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail