Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
المؤلف | Zachi I., Attia |
المؤلف | Kapa, Suraj |
المؤلف | Dugan, Jennifer |
المؤلف | Pereira, Naveen |
المؤلف | Noseworthy, Peter A. |
المؤلف | Jimenez, Francisco Lopez |
المؤلف | Cruz, Jessica |
المؤلف | Carter, Rickey E. |
المؤلف | DeSimone, Daniel C. |
المؤلف | Signorino, John |
المؤلف | Halamka, John |
المؤلف | Chennaiah Gari, Nikhita R. |
المؤلف | Madathala, Raja Sekhar |
المؤلف | Platonov, Pyotr G. |
المؤلف | Gul, Fahad |
المؤلف | Janssens, Stefan P. |
المؤلف | Narayan, Sanjiv |
المؤلف | Upadhyay, Gaurav A. |
المؤلف | Alenghat, Francis J. |
المؤلف | Lahiri, Marc K. |
المؤلف | Dujardin, Karl |
المؤلف | Hermel, Melody |
المؤلف | Dominic, Paari |
المؤلف | Turk-Adawi, Karam |
المؤلف | Asaad, Nidal |
المؤلف | Svensson, Anneli |
المؤلف | Fernandez-Aviles, Francisco |
المؤلف | Esakof, Darryl D. |
المؤلف | Bartunek, Jozef |
المؤلف | Noheria, Amit |
المؤلف | Sridhar, Arun R. |
المؤلف | Lanza, Gaetano A. |
المؤلف | Cohoon, Kevin |
المؤلف | Padmanabhan, Deepak |
المؤلف | Pardo Gutierrez, Jose Alberto |
المؤلف | Sinagra, Gianfranco |
المؤلف | Merlo, Marco |
المؤلف | Zagari, Domenico |
المؤلف | Rodriguez Escenaro, Brenda D. |
المؤلف | Pahlajani, Dev B. |
المؤلف | Loncar, Goran |
المؤلف | Vukomanovic, Vladan |
المؤلف | Jensen, Henrik K. |
المؤلف | Farkouh, Michael E. |
المؤلف | Luescher, Thomas F. |
المؤلف | Su Ping, Carolyn Lam |
المؤلف | Peters, Nicholas S. |
المؤلف | Friedman, Paul A. |
تاريخ الإتاحة | 2021-08-08T11:02:47Z |
تاريخ النشر | 2021-08-31 |
اسم المنشور | Mayo Clinic Proceedings |
المعرّف | http://dx.doi.org/10.1016/j.mayocp.2021.05.027 |
الاقتباس | Attia, Zachi I. et. al. , "Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram", Mayo Clinic Proceedings, Volume 96, Issue 8, 2021, Pages 2081-2094, ISSN 0025-6196, https://doi.org/10.1016/j.mayocp.2021.05.027. |
الرقم المعياري الدولي للكتاب | 00256196 |
الملخص | ObjectiveTo rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). MethodsA global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction–confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site. ResultsThe area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%. ConclusionInfection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence–enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Screening COVID 19 Artificial Intelligence |
النوع | Article |
رقم العدد | 8 |
رقم المجلد | 96 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
أبحاث فيروس كورونا المستجد (كوفيد-19) [835 items ]
-
الصحة العامة [433 items ]