عرض بسيط للتسجيلة

المؤلفZachi I., Attia
المؤلفKapa, Suraj
المؤلفDugan, Jennifer
المؤلفPereira, Naveen
المؤلفNoseworthy, Peter A.
المؤلفJimenez, Francisco Lopez
المؤلفCruz, Jessica
المؤلفCarter, Rickey E.
المؤلفDeSimone, Daniel C.
المؤلفSignorino, John
المؤلفHalamka, John
المؤلفChennaiah Gari, Nikhita R.
المؤلفMadathala, Raja Sekhar
المؤلفPlatonov, Pyotr G.
المؤلفGul, Fahad
المؤلفJanssens, Stefan P.
المؤلفNarayan, Sanjiv
المؤلفUpadhyay, Gaurav A.
المؤلفAlenghat, Francis J.
المؤلفLahiri, Marc K.
المؤلفDujardin, Karl
المؤلفHermel, Melody
المؤلفDominic, Paari
المؤلفTurk-Adawi, Karam
المؤلفAsaad, Nidal
المؤلفSvensson, Anneli
المؤلفFernandez-Aviles, Francisco
المؤلفEsakof, Darryl D.
المؤلفBartunek, Jozef
المؤلفNoheria, Amit
المؤلفSridhar, Arun R.
المؤلفLanza, Gaetano A.
المؤلفCohoon, Kevin
المؤلفPadmanabhan, Deepak
المؤلفPardo Gutierrez, Jose Alberto
المؤلفSinagra, Gianfranco
المؤلفMerlo, Marco
المؤلفZagari, Domenico
المؤلفRodriguez Escenaro, Brenda D.
المؤلفPahlajani, Dev B.
المؤلفLoncar, Goran
المؤلفVukomanovic, Vladan
المؤلفJensen, Henrik K.
المؤلفFarkouh, Michael E.
المؤلفLuescher, Thomas F.
المؤلفSu Ping, Carolyn Lam
المؤلفPeters, Nicholas S.
المؤلفFriedman, Paul A.
تاريخ الإتاحة2021-08-08T11:02:47Z
تاريخ النشر2021-08-31
اسم المنشورMayo Clinic Proceedings
المعرّفhttp://dx.doi.org/10.1016/j.mayocp.2021.05.027
الاقتباسAttia, Zachi I. et. al. , "Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram", Mayo Clinic Proceedings, Volume 96, Issue 8, 2021, Pages 2081-2094, ISSN 0025-6196, https://doi.org/10.1016/j.mayocp.2021.05.027.
الرقم المعياري الدولي للكتاب00256196
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S0025619621004699
معرّف المصادر الموحدhttp://hdl.handle.net/10576/21645
الملخصObjectiveTo rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). MethodsA global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction–confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site. ResultsThe area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%. ConclusionInfection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence–enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control.
اللغةen
الناشرElsevier
الموضوعScreening
COVID 19
Artificial Intelligence
العنوانRapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
النوعArticle
رقم العدد8
رقم المجلد96
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة